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eLife Assessment
This study presents valuable evidence concerning the potential for naturalistic movie-viewing fMRI 
experiments to reveal some features that are correlated with the functional and topographical orga-
nization of the developing visual system in awake infants and toddlers. The data are compelling 
given the difficulty of studying this population, the methodology is original and validated, and the 
evidence supporting the conclusions is convincing and in line with prior research using resting-state 
and awake task-based fMRI. This study will be of interest to cognitive neuroscientists and develop-
mental psychologists, and in particular those interested in using fMRI to investigate brain organisa-
tion in pediatric and clinical populations with limited tolerance to fMRI.

Abstract Studying infant minds with movies is a promising way to increase engagement relative 
to traditional tasks. However, the spatial specificity and functional significance of movie-evoked 
activity in infants remains unclear. Here, we investigated what movies can reveal about the organi-
zation of the infant visual system. We collected fMRI data from 15 awake infants and toddlers aged 
5–23 months who attentively watched a movie. The activity evoked by the movie reflected the func-
tional profile of visual areas. Namely, homotopic areas from the two hemispheres responded simi-
larly to the movie, whereas distinct areas responded dissimilarly, especially across dorsal and ventral 
visual cortex. Moreover, visual maps that typically require time-intensive and complicated retinotopic 
mapping could be predicted, albeit imprecisely, from movie-evoked activity in both data-driven anal-
yses (i.e. independent component analysis) at the individual level and by using functional alignment 
into a common low-dimensional embedding to generalize across participants. These results suggest 
that the infant visual system is already structured to process dynamic, naturalistic information and 
that fine-grained cortical organization can be discovered from movie data.

Introduction
Studying the function and organization of the youngest human brains remains a challenge. Despite 
the recent growth in infant fMRI (Biagi et al., 2015; Biagi et al., 2023; Cabral et al., 2022; Deen 
et al., 2017; Kosakowski et al., 2022; Truzzi and Cusack, 2023), one of the most important obstacles 
facing this research is that infants are unable to maintain focus for long periods of time and struggle 
to complete traditional cognitive tasks (Ellis et al., 2020a). Movies can be a useful tool for studying 
the developing mind (Vanderwal et al., 2019), as has been shown in older children (Vanderwal et al., 
2015; Richardson et al., 2018; Alexander et al., 2017). The dynamic, continuous, and content-rich 
nature of movie stimuli (Nastase et al., 2020; Finn et al., 2022) make them effective at capturing 
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infant attention (Franchak et al., 2016; Tran et al., 2017). Here, we examine what can be revealed 
about the functional organization of the infant brain during movie-watching.

We focus on visual cortex because its organization at multiple spatial scales is well understood 
from traditional, task-based fMRI. The mammalian visual cortex is divided into multiple areas with 
partially distinct functional roles between areas (Brodmann, 1909; Felleman and Van Essen, 1991; 
Ungerleider and Mishkin, 1982). Within visual areas, there are orderly, topographic representations, 
or maps, of visual space (Kaas, 1997; White and Fitzpatrick, 2007). These maps capture informa-
tion about the location and spatial extent of visual stimuli with respect to fixation. Thus, maps reflect 
sensitivity to polar angle, measured via alternations between horizontal and vertical meridians that 
define area boundaries (Fox et al., 1987; Schneider et al., 1993), and sensitivity to spatial frequency, 
reflected in gradients of sensitivity to high and low spatial frequencies from foveal to peripheral vision, 
respectively (Henriksson et al., 2008). Previously, we reported that these maps could be revealed by 
a retinotopy task in infants as young as 5 months of age (Ellis et al., 2021). However, it remains unclear 
whether these maps are evoked by more naturalistic task designs.

The primary goal of the current study is to investigate whether movie-watching data recapitulates 
the organization of visual cortex. Movies drive strong and naturalistic responses in sensory regions 
while minimizing task demands (Loiotile et al., 2019; Nastase et al., 2020; Finn et al., 2022) and thus 
are a proxy for typical experience. In adults, movies and resting-state data have been used to char-
acterize the visual cortex in a data-driven fashion (Knapen, 2021; Lu et al., 2017; Guntupalli et al., 
2016). Movies have been useful in awake infant fMRI for studying event segmentation (Yates et al., 
2022), functional alignment (Turek et al., 2018), and brain networks (Yates et al., 2023). However, 
this past work did not address the granularity and specificity of cortical organization that movies 
evoke. For example, movies evoke similar activity across infants in anatomically aligned visual areas 
(Yates et al., 2022), but it remains unclear whether responses to movie content differ between visual 
areas (e.g. is there more similarity of function within visual areas than between [Li et al., 2022]). More-
over, it is unknown whether structure within visual areas, namely visual maps, contributes substantially 

eLife digest How babies see the world is a mystery. They cannot share their experiences, and 
adults cannot recall this time. Clever experimental methods are needed to understand sensory 
processing in babies' brains and how variations from adults could cause them to have different 
experiences.

However, finding ways to study infant brain structure and function has challenged scientists. Babies 
cannot complete many cognitive tasks used to assess adult brain activity. It can also be difficult to use 
imaging tools like magnetic resonance imaging (MRI) that require individuals to lay still for extended 
periods, which can be challenging for infants who are often wiggly and have short attention spans. As 
a result, many questions remain unanswered about infant brain organization and function.

Recent technological advances have made it easier to study infant brain activity. Scientists have 
developed approaches allowing infants to watch a movie while being comfortably positioned in an 
MRI machine. Infants and toddlers will often happily watch a film for minutes at a time, enabling scien-
tists to observe how their brains respond to what they see on the screen.

Ellis et al. used this approach to assess the organization of the visual system in the brains of 15 
infants while they watched movies during functional MRI. The researchers compared the infant scans 
with scans of adult brains who watched the same film, which revealed that babies’ brain activity is 
surprisingly structured and similar to that of adults. Moreover, the organization of the adult brain 
could predict the organization of the infant brain.

Ellis et al. show that scanning infants while they watch movies can be a valuable way to study 
their brain activity. The experiments reveal important similarities in adult and infant visual processing, 
helping to identify the foundation on which visual development rests. The movie-watching experi-
ments may also provide a model for scientists to study other types of infant perception and cognition. 
Movies can help scientists compare brain activity in typically developing infants to those with neuro-
developmental conditions, which could one day help clinicians create new avenues for diagnosis or 
treatment.

https://doi.org/10.7554/eLife.92119
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to visual-evoked activity. Additionally, we wish to test whether methods for functional alignment can 
be used with infants. Functional alignment finds a mapping between participants using functional 
activity – rather than anatomy – and in adults can improve signal-to-noise, enhance across participant 
prediction, and enable unique analyses (Busch et al., 2021; Guntupalli et al., 2016; Chen et al., 
2015; Kumar et al., 2020b).

Nonetheless, there are several reasons for skepticism that movies could evoke detailed, retinotopic 
organization: Movies may not fully sample the stimulus parameters (e.g. spatial frequencies) or visual 
functions needed to find topographic maps and areas in visual cortex. Even if movies contain the 
necessary visual properties, they may unfold at a faster rate than can be detected by fMRI. Addition-
ally, naturalistic stimuli may not drive visual responses as robustly as experimenter-defined stimuli that 
are designed for retinotopic mapping with discrete onsets and high contrast. Finally, the complexity 
of movie stimuli may result in variable attention between participants, impeding discovery of reliable 
visual structure across individuals. If movies do show the fine-grained organization of the infant visual 
cortex, this suggests that this structure (e.g. visual maps) scaffolds the processing of ongoing visual 
information.

We conducted several analyses to probe different kinds of visual granularity in infant movie-
watching fMRI data. First, we asked whether distinct areas of the infant visual cortex have different 
functional profiles. Second, we asked whether the topographic organization of visual areas can be 
recovered within participants. Third, we asked whether this within-area organization is aligned across 
participants. These three analyses assess key indicators of the mature visual system: functional special-
ization between areas, organization within areas, and consistency between individuals.

Results
We performed fMRI in awake, behaving infants and toddlers using a protocol described previously 
(Ellis et al., 2020a). The dataset consisted of 15 sessions of infant participants (4.8–23.1 months of 
age) who had both movie-watching data and retinotopic mapping data collected in the same session 

Figure 1. Homotopic correlations between retinotopic areas. (A) Average correlation of the time course of activity evoked during movie-watching for 
all areas. This is done for the left and right hemisphere separately, creating a matrix that is not diagonally symmetric. The color triangles overlaid on the 
corners of the matrix cells indicate which cells contributed to the summary data of different comparisons in subpanels B and C. (B) Across-hemisphere 
similarity of the same visual area from the same stream (e.g. left ventral V1 and right ventral V1) and from different streams (e.g. left ventral V1 and 
right dorsal V1). (C) Across-hemisphere similarity in the same stream when matching the same area (e.g. left ventral V1 and right ventral V1), matching 
to an adjacent area (e.g. left ventral V1 and right ventral V2), or matching to a distal area (e.g. left ventral V1 and right ventral V4). Gray lines represent 
individual participants. ***=p<0.001 from bootstrap resampling.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Homotopic correlations between retinotopic areas in the adult sample, akin to Figure 1.

Figure supplement 2. Homotopic correlations when controlling for motion.

Figure supplement 3. Homotopic correlations between anatomically defined areas corresponding to the data used in Figure 2.

https://doi.org/10.7554/eLife.92119
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(Appendix 1—table 1). All available movies from each session were included (Appendix 1—table 2), 
with an average duration of 540.7 s (range: 186–1116 s).

The retinotopic-mapping data from the same infants (Ellis et al., 2021) allowed us to generate 
infant-specific meridian maps (horizontal versus vertical stimulation) and spatial frequency maps (high 
versus low stimulation). The meridian maps were used to define regions of interest (ROIs) for visual 
areas V1, V2, V3, V4, and V3A/B.

As a proof of concept that the analyses we use with infants can identify fine-grained visual orga-
nization, we ran the main analyses on an adult sample. These adults (8 participants) had both retino-
topic mapping data and movie-watching data. Figure 1—figure supplement 1, Figure 2—figure 
supplement 1, Figure 4—figure supplement 1, and Figure 6—figure supplement 1 demonstrate 
that applying these analyses to adult movie data reveals similar structure to what we find in infants.

Evidence of area organization with homotopic similarity
To determine what movies can reveal about the organization of areas in visual cortex, we compared 
activity across left and right hemispheres. Although these analyses cannot define visual maps, they 
test whether visual areas have different functional signatures. Namely, we correlated time courses of 
movie-related BOLD activity between retinotopically defined, participant-specific ROIs (7.3 regions 
per participant per hemisphere, range: 6–8) (Arcaro and Livingstone, 2017; Butt et al., 2015; Li 
et al., 2022). Higher correlations between the same (i.e. homotopic) areas than different areas indi-
cate differentiation of function between areas. Moreover, other than V1, homotopic visual areas are 
anatomically separated across the hemispheres, so similar responses are unlikely to be attributable to 
spatial autocorrelation.

Homotopic areas (e.g. left ventral V1 and right ventral V1; diagonal of Figure 1A) were highly 
correlated (mean [M]=0.88, range of area means: 0.85–0.90), and more correlated than non-homotopic 
areas, such as the same visual area across streams (e.g. left ventral V1 and right dorsal V1; Figure 1B; 
ΔFisher Z M=0.42, p<0.001). To clarify, we use the term ‘stream’ to liberally distinguish visual regions 
that are more dorsal or more ventral, as opposed to the functional definition used in reference to 
the ‘what’ and ‘where’ streams (Ungerleider and Mishkin, 1982). We found no evidence that the 
variability in movie duration per participant correlated with this difference (r=0.08, p=0.700). Within 
stream (Figure 1C), homotopic areas were more correlated than adjacent areas in the visual hierarchy 
(e.g. left ventral V1 and right ventral V2; ΔFisher Z M=0.09, p<0.001), and adjacent areas were more 
correlated than distal areas (e.g. left ventral V1 and right ventral V4; ΔFisher Z M=0.20, p<0.001). There 
was no correlation between movie duration and effect (Same>Adjacent: r=−0.01, p=0.965, Adja-
cent>Distal: r=−0.09, p=0.740). Additionally, if we control for motion in the correlation between areas 
– in case motion transients drive consistent activity across areas – then the effects described here 
are negligibly different (Figure 1—figure supplement 2). Hence, movies elicit distinct processing 
dynamics across areas of infant visual cortex defined independently using retinotopic mapping.

We previously found (Ellis et al., 2021) that an anatomical segmentation of visual cortex (Wang 
et al., 2015) could identify these same areas reasonably well. Indeed, the results above were repli-
cated when using visual areas defined anatomically (Figure 1—figure supplement 3). However, a key 
advantage of anatomical segmentation is that it can define visual areas not mapped by a functional 
retinotopy task. This could help address limitations of the analyses above, namely that there was a 
variable number of retinotopic areas identified across infants and these areas covered only part of 
visually responsive cortex. Focusing on broader areas that include portions of the ventral and dorsal 
stream in the adult visual cortex (Ungerleider and Mishkin, 1982; Dale et al., 1999), we tested for 
functional differentiation of these streams in infants. We applied multi-dimensional scaling (MDS) – a 
data-driven method for assessing the clustering of data – to the average cross-correlation matrix 
across participants (Figure 1—figure supplement 3; Haak and Beckmann, 2018; Arcaro and Living-
stone, 2017). The stress of fitting these data with a two-dimensional MDS was in the acceptable range 
(0.076). Clear organization was present (Figure 2): areas in the adult-defined ventral stream (e.g. VO, 
PHC) differentiated from areas in the adult-defined dorsal stream (e.g. V3A/B). Indeed, we see a slight 
separation between canonical dorsal areas and the recently defined lateral pathway (Weiner and 
Gomez, 2021) (e.g. LO1, hMT), although more evidence is needed to substantiate this distinction. 
This separation between streams is striking when considering that it happens despite differences in 
visual field representations across areas: while dorsal V1 and ventral V1 represent the lower and upper 

https://doi.org/10.7554/eLife.92119
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visual field, respectively, V3A/B and hV4 both have full visual field maps. These visual field represen-
tations can be detected in adults (Haak et al., 2013), however, they are often not the primary driver 
of function (Haak and Beckmann, 2018). We see that in infants too: hV4 and V3A/B represent the 
same visual space yet have distinct functional profiles. Again, this organization cannot be attributed to 
mere spatial autocorrelation within stream because analyses were conducted across hemispheres (at 
significant anatomical distance) and this pattern is preserved when accounting for motion (Figure 1—
figure supplement 2). These results thus provide evidence of a dissociation in the functional profile of 
anatomically defined ventral and dorsal streams during infant movie-watching.

Evidence of within-area organization with independent component 
analysis
We next explored whether movies can reveal fine-grained organization within visual areas by using 
independent component analysis (ICA) to propose visual maps in individual infant brains (Arcaro 
and Livingstone, 2017; Beckmann et  al., 2005; Knapen, 2021; Lu et  al., 2017; Moeller et  al., 
2009). ICA is a method for decomposing a source into constituent signals by finding components that 
account for independent variance. When applied to fMRI data (using MELODIC in FSL), these compo-
nents have spatial structure that varies in strength over time. Many of these components reflect noise 
(e.g. motion, breathing) or task-related signals (e.g. face responses), while other components reflect 
the functional architecture of the brain (e.g. topographic maps) (Arcaro and Livingstone, 2017; Beck-
mann et al., 2005; Knapen, 2021; Lu et al., 2017; Moeller et al., 2009). We visually inspected each 
component and categorized it as a potential spatial frequency map, a potential meridian map, or 
neither. This process was blind to the ground truth of what the visual maps look like for that partic-
ipant from the retinotopic mapping task, simulating what would be possible if retinotopy data from 

Figure 2. Multi-dimensional scaling (MDS) of movie-evoked activity in visual cortex. (A) Anatomically defined areas Dale et al., 1999 used for this 
analysis, separated into dorsal (red) and ventral (blue) visual cortex, overlaid on a flatmap of visual cortex. (B) The time course of functional activity for 
each area was extracted and compared across hemispheres (e.g. left V1 was correlated with right V1). This matrix was averaged across participants and 
used to create a Euclidean dissimilarity matrix. MDS captured the structure of this matrix in two dimensions with suitably low stress. The plot shows a 
projection that emphasizes the similarity to the brain’s organization.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Multi-dimensional scaling of movie-evoked activity in adult visual cortex, akin to Figure 2.

https://doi.org/10.7554/eLife.92119
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the participants were unavailable. Success in this process requires that (1) retinotopic organization 
accounts for sufficient variance in visual activity to be identified by ICA and (2) experimenters can 
accurately identify these components.

Multiple maps could be identified per participant because there were more than one candidate 
that the experimenter thought was a suitable map. Across infant participants, we identified an average 
of 2.4 (range: 0–5) components as potential spatial frequency maps and 1.1 (range: 0–4) components 
as potential meridian maps. To evaluate the quality of these maps, we compared them to the ground 
truth of that participant’s task-evoked maps (Figure  3). Spatial frequency and meridian maps are 

Figure 3. Example retinotopic task versus independent component analysis (ICA)-based spatial frequency maps. (A) Spatial frequency map of a 
17.1-month-old toddler. The retinotopic task data are from a prior study (Ellis et al., 2021). The view is of the flattened occipital cortex with visual areas 
traced in black. (B) Component captured by ICA of movie data from the same participant. This component was chosen as a spatial frequency map in 
this participant. The sign of ICA is arbitrary so it was flipped here for visualization. (C) Gradients in spatial frequency within-area from the task-evoked 
map in subpanel A. Lines parallel to the area boundaries (emanating from fovea to periphery) were manually traced and used to capture the changes in 
response to high versus low spatial frequency stimulation. (D) Gradients in the component map. We used the same lines that were manually traced on 
the task-evoked map to assess the change in the component’s response. We found a monotonic trend within area from medial to lateral, just like we see 
in the ground truth. This is one example result, find all participants in Figure 4—figure supplement 2.

https://doi.org/10.7554/eLife.92119
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defined by their systematic gradients of intensity across the cortical surface (Arcaro et al., 2009). 
Lines drawn parallel to area boundaries show monotonic gradients on spatial frequency maps, with 
stronger responses to high spatial frequency at the fovea, and stronger responses to low spatial 
frequencies in the periphery (Figure 4—figure supplement 2). By contrast, lines drawn perpendicular 
to the area boundaries show oscillations in sensitivity to horizontal and vertical meridians on meridian 
maps (Figure 4—figure supplement 3). Using the same manually traced lines from the retinotopy 
task, we measured the intensity gradients in each component from the movie-watching data. We can 
then use the gradients of intensity in the retinotopy task-defined maps as a benchmark for comparison 
with the ICA-derived maps.

To assess the selected component maps, we correlated the gradients (described above) of the 
task-evoked and component maps. This test uses independent data: the components were defined 
based on movie data and validated against task-evoked retinotopic maps. Figure  4A shows the 
absolute correlations between the task-evoked maps and the manually identified spatial frequency 
components (M=0.52, range: 0.23–0.85). To evaluate whether movies are a viable method for defining 

Figure 4. Similarity between visual maps from the retinotopy task and independent component analysis (ICA) applied to movies. (A) Absolute 
correlation between the task-evoked and component spatial frequency maps (absolute values used because sign of ICA maps is arbitrary). Each dot is 
a manually identified component. At least one component was identified in 13 out of 15 participants. The bar plot is the average across participants. 
The error bar is the standard error across participants. (B) Ranked correlations for the manually identified spatial frequency components relative to 
all components identified by ICA. Bar plot is same as A. (C) Same as A but for meridian maps. At least one component was identified in 9 out of 15 
participants. (D) Same as B but for meridian maps.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Similarity between visual maps from the adult retinotopy task and independent component analysis (ICA) applied to movies, akin 
to Figure 4.

Figure supplement 2. Gradients for the task-evoked and independent component analysis (ICA)-based spatial frequency maps.

Figure supplement 3. Gradients for the task-evoked and independent component analysis (ICA)-based meridian maps.

https://doi.org/10.7554/eLife.92119
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retinotopic maps, we tested whether the task-evoked retinotopic maps were more similar to manually 
identified components than other components. We identified the best component in 6 of 13 partic-
ipants (Figure 4B). The percentile of the average manually identified component was high (M=63.8 
percentile, range: 26.7–98.1) and significantly above chance (ΔM=13.8, CI=[3.3–24.0], p=0.011). This 
illustrates that the manually identified components derived from movie-watching data are similar to 
the spatial frequency maps derived from retinotopic mapping. The fact that this can work also indi-
cates the underlying architecture of the infant visual system influences how movies are processed.

We performed the same analyses on the meridian maps. As noted above, the lines were now 
traced perpendicular to the boundaries. Figure 4C shows the correlation between the task-evoked 
meridian maps and the manually identified components (M=0.46, range: 0.03–0.81). Compared to 
all possible components identified by ICA, the best possible component was identified for 1 out of 
9 participants (Figure 4D). Although the percentile of the average manually identified component 
was numerically high (M=67.6 percentile, range: 3.0–100.0), it was not significantly above chance 
(ΔM=17.6, CI=[–1.8–33.0], p=0.074). This difference in performance compared to spatial frequency 
is also evident in the fact that fewer components were identified as potential meridian maps, and 
that several participants had no such maps. Even so, some participants have components that are 
highly similar to the meridian maps (e.g. s8037_1_2 or s6687_1_5 in Figure 4—figure supplement 
3). Because it is possible, albeit less likely, to identify meridian maps from ICA, the structure may be 
present in the data but more susceptible to noise or gaze variability. Spatial frequency maps have a 
coarser structure than meridian maps, and are more invariant to fixation, which may explain why they 
are easier to identify. Equivalent analyses of adult data (Figure 4—figure supplement 1) support this 
conclusion: meridian maps are found in fewer adult participants.

Despite the similarity of the identified components to the retinotopic maps, it is possible that the 
components are noise and this similarity arose by chance. Indeed, given enough patterns of spatially 
smooth noise, some will resemble retinotopic organization. To test how often components derived 
from noise are misidentified, we made a version of each component in which the functional data were 
misaligned with respect to the anatomical data while preserving spatial smoothness. We then inter-
mixed an equal number of these ‘rolled’ components among the original components and random-
ized the order such that a coder would be blind as to whether any given component was rolled or 
original. The blind coder manually categorized each component as a spatial frequency component, a 
meridian component, or neither (identical to the steps above). It was not possible to make the coder 
blind for some participants whose rolled data contained visible clues because of partial voluming. In 
the 6 participants without such clues, only 1 of the 14 components labeled as spatial frequency or 
meridian, from 920 total components, was a rolled component. The fact that 13 of 14 selected compo-
nents (93%) were original was extremely unlikely to have occurred by chance (binomial test: p=0.002). 
Thus, our selection procedure rarely identified components as retinotopic in realistic noise.

Evidence of within-area organization with shared response modeling
Finally, we investigated whether the organization of visual cortex in one infant can be predicted from 
movie-watching data in other participants using functional alignment (Guntupalli et al., 2016). For 
such functional alignment to work, stimulus-driven responses to the movie must be shared across 
participants. These analyses also benefit from greater amounts of data, so we expanded the sample in 
two ways (Appendix 1—table 3): First, we added 71 movie-watching datasets from additional infants 
who saw the same movies but did not have usable retinotopy data (and thus were not included in the 
analyses above that compared movie and retinotopy data within participant). Second, we used data 
from adult participants, including 8 participants who completed the retinotopy task and saw a subset 
of the movies we showed infants, and 41 datasets from adults who had seen the movies shown to 
infants but did not have retinotopy data.

With this expanded dataset, we used shared response modeling (SRM) (Chen et al., 2015) to predict 
visual maps from other participants (Figure 5). Specifically, we held out one participant for testing 
purposes and used SRM to learn a low-dimensional, shared feature space from the movie-watching 
data of the remaining participants in a mask of occipital cortex. This shared space represented the 
responses to that movie in visual cortex that were shared across participants, agnostic to the precise 
localization of these responses across voxels in each individual (Figure 5A). The number of features in 
the shared space (K=10) was determined via a cross-validation procedure on movie-watching data in 

https://doi.org/10.7554/eLife.92119
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adults (Figure 5—figure supplement 1). The task-evoked retinotopic maps from all but the held-out 
participant were transformed into this shared space and averaged, separately for each map type 
(Figure 5B). We then mapped the held-out participant’s movie data into the learned shared space 
without changing the shared space (Figure  5C). In other words, the shared response model was 
learned and frozen before the held-out participant’s data was considered. This approach has been 
used and validated in prior SRM studies (Yates et al., 2021). Taking the inverse of the held-out partici-
pant’s mapping allowed us to transform the averaged shared space representation of visual maps into 
the held-out participant’s brain space (Figure 5D).

This predicted visual organization was compared to the participant’s actual visual map from the 
retinotopy task using the same methods as for ICA. In other words, the manually traced lines were 
used to measure the intensity gradients in the predicted maps, and these gradients were compared to 
the ground truth. Critically, predicting the retinotopic maps used no retinotopy data from the held-out 
participant. Moreover, it is completely unconstrained anatomically (except for a liberal occipital lobe 
mask). Hence, the similarity of the SRM-predicted map to the task-evoked map is due to representa-
tions of visual space in other participants being mapped into the shared space.

We trained SRMs on two populations to predict a held-out infant’s maps: (1) other infants and 
(2) adults. There may be advantages to either approach: infants are likely more similar to each other 
than adults in terms of how they respond to the movie; however, their data is more contaminated by 

Figure 5. Pipeline for predicting visual maps from movie data. The figure divides the pipeline into four steps. All participants watched the same movie. 
To predict infant data from other infants (or adults), one participant was held out of the training and used as the test participant. Step A: The training 
participants’ movie data (three color-coded participants shown in this schematic) is masked to include just occipital voxels. The resulting matrix is run 
through shared response modeling (SRM) (Chen et al., 2015) to find a lower-dimensional embedding (i.e. a weight matrix) of their shared response. 
Step B: The training participants’ retinotopic maps are transformed into the shared response space using the weight matrices determined in step A. 
Step C: Once steps A and B are finished, the test participant’s movie data are mapped into the shared space that was fixed from step A. This creates a 
weight matrix for this test participant. Step D: The averaged shared response of the retinotopic maps from step B is combined with the test participant’s 
weight matrix from step C to make a prediction of the retinotopic map in the test participant. This prediction can then be validated against their real 
map from the retinotopy task. Individual gradients for each participant are shown in Figure 6—figure supplement 2, Figure 6—figure supplements 
3–5.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Cross-validation of the number of features in shared response modeling (SRM).

https://doi.org/10.7554/eLife.92119
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motion. When using the infants to predict a held-out infant, the spatial frequency map (Figure 6A) 
and meridian map (Figure 6C) predictions are moderately correlated with task-evoked retinotopy 
data (spatial frequency: M=0.46, range: –0.06 to 0.78; meridian: M=0.24, range: –0.12 to 0.78). Some 
participants were fit well using SRM (e.g. s2077_1_1, and s6687_1_5 for Figure 6—figure supple-
ment 2, Figure 6—figure supplement 3).

To evaluate whether success was due to fitting the shared response, we flipped the held-out 
participant’s movie data (i.e. the first timepoint became the last timepoint and vice versa) so that an 
appropriate fit is not be learnable. The vertical lines for each movie in Figure 6 indicate the change 
in performance for this baseline. Indeed, flipping significantly worsened prediction of the spatial 
frequency map (ΔFisher Z M=0.52, CI=[0.24–0.80], p<0.001) and the meridian map (ΔFisher Z M=0.24, 

Figure 6. Similarity of shared response modeling (SRM)-predicted maps and task-evoked retinotopic maps. Correlation between the gradients of the 
(A) spatial frequency maps and (C) meridian maps predicted with SRM from other infants and task-evoked retinotopy maps. (B, D) Same as A, except 
using adult participants to train the SRM and predict maps. Dot color indicates the movie used for fitting the SRM. The end of the line indicates the 
correlation of the task-evoked retinotopy map and the predicted map when using flipped training data for SRM. Hence, lines extending below the dot 
indicate that the true performance was higher than a baseline fit.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Similarity of shared response modeling (SRM)-predicted maps and task-evoked retinotopic maps in adults, akin to Figure 6.

Figure supplement 2. Gradients for the spatial frequency maps predicted using shared response modeling (SRM) from other infant participants, 
compared to the task-evoked gradients.

Figure supplement 3. Gradients for the meridian maps predicted using shared response modeling (SRM) from other infant participants, compared to 
the task-evoked gradients.

Figure supplement 4. Gradients for the spatial frequency maps predicted using shared response modeling (SRM) from adult participants, compared to 
the task-evoked gradients.

Figure supplement 5. Gradients for the meridian maps predicted using shared response modeling (SRM) from adult participants, compared to the 
task-evoked gradients.

https://doi.org/10.7554/eLife.92119
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CI=[0.02–0.49], p=0.034). Hence, the movie-evoked response enables the mapping of other infants’ 
retinotopic maps into a held-out infant.

Using adult data to predict infant data also results in maps similar to task-evoked spatial frequency 
maps (Figure 6B; M=0.56, range: 0.17–0.79) and meridian maps (Figure 6D; M=0.34, range: –0.27–
0.64). Some participants were well predicted by these methods (e.g. s8037_1_2, and s6687_1_4 for 
Figure 6—figure supplement 4, Figure 6—figure supplement 5). Again, flipping the held-out partic-
ipants movie data significantly worsened prediction of the held-out participant’s spatial frequency 
map (ΔFisher Z M=0.40, CI=[0.17–0.65], p<0.001) and meridian map (ΔFisher Z M=0.33, CI=[0.12–0.55], 
p=0.002). There was no significant difference in SRM performance when using adults versus infants as 
the training set (spatial frequency: ΔFisher Z M=0.14, CI=[–0.00–0.27], p=0.054; meridian: ΔFisher Z M=0.11, 
CI=[–0.05–0.28], p=0.179). In sum, SRM could be used to predict visual maps with moderate accuracy. 
This indicates that functional alignment methods like SRM can partially capture the retinotopic orga-
nization of visual cortex from infant movie-watching data.

We performed an anatomical alignment analog of the functional alignment (SRM) approach. This 
analysis serves as a benchmark for predicting visual maps using task-based data, rather than movie data, 
from other participants. For each infant participant, we aggregated all other infant or adult participants 
as a reference. The retinotopic maps from these reference participants were anatomically aligned to 
the standard surface template, and then averaged. These averages served as predictions of the maps 
in the test participant, akin to SRM, and were analyzed equivalently (i.e. correlating the gradients in 
the predicted map with the gradients in the task-based map). These correlations (Appendix 1—table 
4) are significantly higher than for functional alignment (using infants to predict spatial frequency, 
anatomical alignment<functional alignment: ΔFisher Z M=0.44, CI=[0.32–0.58], p<0.001; using infants 
to predict meridians, anatomical alignment<functional alignment: ΔFisher Z M=0.61, CI=[0.47–0.74], 
p<0.001; using adults to predict spatial frequency, anatomical alignment<functional alignment: ΔFisher 

Z M=0.31, CI=[0.21–0.42], p<0.001; using adults to predict meridians, anatomical alignment<func-
tional alignment: ΔFisher Z M=0.49, CI=[0.39–0.60], p<0.001). This suggests that even if SRM shows that 
movies can be used to produce retinotopic maps that are significantly similar to a participant, these 
maps are not as good as those that can be produced by anatomical alignment of the maps from other 
participants without any movie data.

Discussion
We present evidence that movies can reveal the organization of infant visual cortex at different spatial 
scales. We found that movies evoke differential function across areas, topographic organization of 
function within areas, and this topographic organization is shared across participants.

We show that the movie-evoked response in a visual area is more similar to the same area in the 
other hemisphere than to different areas in the other hemisphere. This suggests that visual areas are 
functionally differentiated in infancy and that this function is shared across hemispheres (Li et  al., 
2022). By comparing across anatomically distant hemispheres, we reduced the impact of spatial auto-
correlation and isolated the stimulus-driven signals in the brain activity (Arcaro and Livingstone, 
2017; Li et al., 2022; Smyser et al., 2010). The greater across-hemisphere similarity for same versus 
different areas provides some of the first evidence that visual areas and streams are functionally differ-
entiated in infants as young as 5 months of age. Previous work suggests that functions of the dorsal 
and ventral streams are detectable in young infants (Wattam-Bell et al., 2010) but that the localiza-
tion of these functions is immature (Braddick and Atkinson, 2011). Despite this, we find that the 
areas of infant visual cortex that will mature into the dorsal and ventral streams have distinct activity 
profiles during movie-watching.

Not only do movies evoke differentiated activity in the infant visual cortex between areas, but 
movies also evoke fine-grained information about the organization of maps within areas. We used a 
data-driven approach (ICA) to discover maps that are similar to retinotopic maps in the infant visual 
cortex. We observed components that were highly similar to a spatial frequency map obtained from 
the same infant in a retinotopy task. This was also true for the meridian maps, to a lesser degree. 
This means that the retinotopic organization of the infant brain accounts for a detectable amount of 
variance in visual activity, otherwise components resembling these maps would not be discoverable. 
Importantly, the components could be identified without knowledge of these ground-truth maps; 
however, their moderate similarity to the task-defined maps makes them a poor replacement. One 

https://doi.org/10.7554/eLife.92119
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caveat for interpreting these results is that although some of the components are similar to a spatial 
frequency map or meridian map, they could reflect a different kind of visual map. For instance, the 
spatial frequency map is highly correlated with the eccentricity map (Henriksson et al., 2008; Smith 
et al., 2001; Srihasam et al., 2014; Tolhurst and Thompson, 1981, which itself is related to recep-
tive field size). This means it is inappropriate to make strong claims about the underlying function of 
the components based on their similarity to visual maps alone. Another limitation is that ICA does 
not provide a scale to the variation: although we find a correlation between gradients of spatial 
frequency in the ground truth and the selected component, we cannot use the component alone to 
infer the spatial frequency selectivity of any part of cortex. In other words, we cannot infer units of 
spatial frequency sensitivity from the components alone. Nonetheless, these results do show that it is 
possible to discover approximations of visual maps in infants and toddlers with movie-watching data 
and ICA.

We also asked whether functional alignment (Chen et al., 2015; Turek et al., 2018) could be used 
to detect visual maps in infants. Using a shared response model (Chen et al., 2015) trained on movie-
watching data of infants or adults, we transformed the visual maps of other individuals into a held-out 
infant’s brain to evaluate the fit to visual maps from a retinotopy task (Guntupalli et al., 2016). Like 
ICA, this was more successful for the spatial frequency maps, but it was still possible in some cases with 
the meridian maps. This is remarkable because the complex pattern of brain activity underlying these 
visual maps could be ‘compressed’ by SRM into only 10 dimensions in the shared space (i.e. the visual 
maps were summarized by a vector of 10 values). The weight matrix that ‘decompressed’ visual maps 
from this low-dimensional space into the held-out infant was learned from their movie-watching data 
alone. Hence, success with this approach means that visual maps are engaged during infant movie-
watching. Furthermore, this result shows that functional alignment is practical for studies in awake 
infants that produce small amounts of data (Ellis and Turk-Browne, 2018). This is initial evidence 
that functional alignment may be useful for enhancing signal quality, like it has in adults (Busch et al., 
2021; Chen et al., 2015; Guntupalli et al., 2016), or revealing changing function over development 
(Yates et al., 2021), which may prove especially useful for infant fMRI (Ellis and Turk-Browne, 2018). 
In sum, movies evoke sufficiently reliable activity across infants and adults to find a shared response, 
and this shared response contains information about the organization of infant visual cortex.

To be clear, we are not suggesting that movies work well enough to replace a retinotopy task 
when accurate maps are needed. For instance, even though ICA found components that were highly 
correlated with the spatial frequency map, we also selected some components that turned out to 
have lower correlations. Without knowing the ground truth from a retinotopy task, there would be 
no way to weed these out. Additionally, anatomical alignment (i.e. averaging the maps from other 
participants and anatomically aligning them to a held-out participant) resulted in maps that were 
highly similar to the ground truth. Indeed, we previously Ellis et al., 2021 found that adult-defined 
visual areas were moderately similar to infants. While functional alignment with adults can outperform 
anatomical alignment methods in similar analyses (Guntupalli et al., 2016), here we find that func-
tional alignment is inferior to anatomical alignment. Thus, if the goal is to define visual areas in an 
infant that lacks task-based retinotopy, anatomical alignment of other participants’ retinotopic maps 
is superior to using movie-based analyses, at least as we tested it.

In conclusion, movies evoke activity in infants and toddlers that recapitulate the organization of the 
visual cortex. This activity is differentiated across visual areas and contains information about the visual 
maps at the foundation of visual processing. The work presented here is another demonstration of the 
power of content-rich, dynamic, and naturalistic stimuli to reveal insights in cognitive neuroscience.

Methods

 Continued on next page

Key resources table 

Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Software, algorithm MATLAB v. 2017a Mathworks, mathworks.com RRID:SCR_001622

Software, algorithm Psychtoolbox v. 3 Medical Innovations Incubator, psychtoolbox.net/ RRID:SCR_002881

Software, algorithm Python v. 3.6 Python Software Foundation, python.org RRID:SCR_008394

https://doi.org/10.7554/eLife.92119
https://www.mathworks.com/
https://identifiers.org/RRID:SCR_001622
https://www.psychtoolbox.net/
https://identifiers.org/RRID:SCR_002881
https://www.python.org/
https://identifiers.org/RRID:SCR_008394
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Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Software, algorithm FSL v. 5.0.9 FMRIB, ​fsl.​fmrib.​ox.​ac.​uk/​fsl/​fslwiki RRID:SCR_002823

Software, algorithm
Experiment menu 
v. 1.1 Yale Turk-Browne Lab, (Ellis et al., 2020b)

https://github.com/ntblab/​
experiment_menu

Software, algorithm
Infant neuropipe 
v. 1.3 Yale Turk-Browne Lab, (Ellis et al., 2020c)

https://github.com/ntblab/​
infant_neuropipe

 Continued

Participants
Infant participants with retinotopy data were previously reported in another study (Ellis et al., 2021). 
Of those 17 original sessions, 15 had usable movie data collected in the same session and thus could 
be included in the current study. In this subsample, the age range was 4.8–23.1 months (M=13.0; 12 
female; Appendix 1—table 1). The combinations of movies that infants saw were inconsistent, so 
the types of comparisons vary across analyses reported here. In brief, all possible infant participant 
sessions (15) were used in the homotopy analyses and ICA, whereas two of these sessions (ages = 
18.5, 23.1  months) could not be used in the SRM analyses. Appendix  1—table 1 reports demo-
graphic information for the infant participants. Appendix 1—table 2 reports participant information 
about each of the movies. It also reports the number and age of participants that were used to bolster 
the SRM analyses.

An adult sample was collected (N=8, 3  females) and used for validating the analyses and for 
supporting SRM analyses in infants. Each participant had both retinotopy and movie-watching data. 
The adult participants saw the five most common movies that were seen by infants in our retinotopy 
sample. To support the SRM analyses, we also utilized any other available adult data from sessions in 
which we had shown the main movies in otherwise identical circumstances (Appendix 1—table 2).

Participants were recruited through fliers, word of mouth, or the Yale Baby School. This study was 
approved by the Human Subjects Committee at Yale University. Adults provided written informed 
consent for themselves (if they were the participants) or on behalf of their child (if their child was the 
participant).

Data acquisition
Data were collected at the Brain Imaging Center (BIC) in the Faculty of Arts and Sciences at Yale 
University. We used a Siemens Prisma (3T) MRI and only the bottom half of the 20-channel head 
coil. Functional images were acquired with a whole-brain T2* gradient-echo EPI sequence (TR = 2 s, 
TE = 30 ms, flip angle = 71, matrix = 64 × 64, slices = 34, resolution = 3 mm iso, interleaved slice 
acquisition). Anatomical images were acquired with a T1 PETRA sequence for infants (TR1=3.32 ms, 
TR2=2250 ms, TE = 0.07 ms, flip angle = 6, matrix = 320 × 320, slices = 320, resolution = 0.94 mm iso, 
radial lines = 30,000) and a T1 MPRAGE sequence for adults, with the top of the head coil attached 
(TR = 2400 ms, TE = 2.41 ms, TI = 1000 ms, flip angle = 8, iPAT = 2, slices = 176, matrix = 256 × 256, 
resolution = 1.0 mm iso).

Procedure
Our approach for collecting fMRI data from awake infants has been described in a previous methods 
paper (Ellis et al., 2020a), with important details repeated below. Infants were first brought in for a 
mock scanning session to acclimate them and their parent to the scanning environment. Scans were 
scheduled when the infants were typically calm and happy. Participants were carefully screened for 
metal. We applied hearing protection in three layers for the infants: silicon inner ear putty, over-ear 
adhesive covers, and ear muffs. For the infants that were played sound (see below), Optoacoustics 
noise canceling headphones were used instead of the ear muffs. The infant was placed on a vacuum 
pillow on the bed that comfortably reduced their movement. The top of the head coil was not placed 
over the infant in order to maintain comfort. Stimuli were projected directly onto the surface of the 
bore. A video camera (High Resolution camera, MRC systems) recorded the infant’s face during scan-
ning. Adult participants underwent the same procedure with the following exceptions: they did not 
attend a mock scanning session, hearing protection was only two layers (earplugs and Optoacoustics 

https://doi.org/10.7554/eLife.92119
https://identifiers.org/RRID:SCR_002823
https://github.com/ntblab/experiment_menu
https://github.com/ntblab/experiment_menu
https://github.com/ntblab/infant_neuropipe
https://github.com/ntblab/infant_neuropipe
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headphones), and they were not on a vacuum pillow. Some infants participated in additional tasks 
during their scanning session.

When the infant was focused, experimental stimuli were shown using Psychtoolbox (Kleiner et al., 
2007) for MATLAB. The details for the retinotopy task are explained fully elsewhere (Ellis et al., 2021). 
In short, we showed two types of blocks. For the meridian mapping blocks, a bow tie cut-out of a 
colorful, large, flickering checkerboard was presented in either a vertical or horizontal orientation 
(Tootell et al., 1995). For the spatial frequency mapping blocks, the stimuli were grayscale Gaussian 
random fields of high (1.5 cycles per visual degree) or low (0.05 cycles per visual degree) spatial 
frequency (Arcaro and Livingstone, 2017). For all blocks, a smaller (1.5 visual degree) grayscale 
movie was played at center to encourage fixation. Each block type contained two phases of stimu-
lation. The first phase consisted of one of the conditions (e.g. horizontal or high) for 20 s, followed 
immediately by the second phase with the other condition of the same block type (e.g. vertical or low, 
respectively) for 20 s. At the end of each block there was at least 6 s rest before the start of the next 
block. Infant participants saw up to 12 blocks of this stimulus, resulting in 24 epochs of stimuli. Adults 
all saw 12 blocks.

Participants saw a broad range of movies in this study (Appendix  1—table 3), some of which 
have been reported previously (Yates et al., 2022; Yates et al., 2023). The movie titled ‘Child Play’ 
comprises the concatenation of four silent videos that range in duration from 64 to 143 s and were 
shown in the same order (with 6 s in-between). They extended 40.8° wide by 25.5° high on the screen. 
The other movies were stylistically similar, computer-generated animations that each lasted 180 s. 
These movies extended 45.0° wide by 25.5° high. Some of the movies were collected as part of an 
unpublished experiment in which we either played the full movie or inserted drops every 10 s (i.e. the 
screen went blank while the audio continued). We included the ‘Dropped’ movies in the homotopy 
analyses and ICA (average number of ‘Dropped’ movies per participant: 0.9, range: 0–3); however, we 
did not include them in the SRM analyses. Moreover, we only included 4 (out of 17) of these movies in 
the SRM analyses because there were insufficient numbers of infant participants to enable the training 
of the SRM.

Gaze coding
The infant gaze coding procedure for the retinotopy data was the same as reported previously (Ellis 
et al., 2021). The gaze coding for the movies was also the same as reported previously (Yates et al., 
2022; Yates et  al., 2023). Participants looked at the screen for an average of 93.7% of the time 
(range: 78–99) for the movies used in the homotopy analyses and ICA, and 94.5% of the time (range: 
82–99) for the movies used in the SRM analyses (Appendix 1—table 1). Adult participants were not 
gaze-coded, but they were monitored online for inattentiveness. One adult participant was drowsy 
so they were manually coded. This resulted in the removal of 4 out of the 24 epochs of retinotopy.

Preprocessing
We used FSL’s FEAT analyses with modifications in order to implement infant-specific preprocessing 
of the data (Ellis et al., 2020a). If infants participated in other experiments during the same functional 
run (14 sessions), the data was split to create a pseudorun. Three burn-in volumes were discarded 
from the beginning of each run/pseudorun when available. To determine the reference volume for 
alignment and motion correction, the Euclidean distance between all volumes was calculated and 
the volume that minimized the distance between all points was chosen as reference (the ‘centroid 
volume’). Adjacent timepoints with greater than 3 mm of movement were interpolated. To create 
the brain mask we calculated the SFNR (Friedman and Glover, 2006) for each voxel in the centroid 
volume. This produced a bimodal distribution reflecting the signal properties of brain and non-brain 
voxels. We thresholded the brain voxels at the trough between these two peaks. We performed 
Gaussian smoothing (FWHM = 5  mm). Motion correction with 6  degrees of freedom (DOF) was 
performed using the centroid volume. AFNI’s despiking algorithm attenuated voxels with aberrant 
timepoints. The data for each movie were z-scored in time.

We registered the centroid volume to a homogenized and skull-stripped anatomical volume from 
each participant. Initial alignment was performed using FLIRT with a normalized mutual information 
cost function. This automatic registration was manually inspected and then corrected if necessary 
using mrAlign from mrTools (Gardner et al., 2018).

https://doi.org/10.7554/eLife.92119
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The final step common across analyses created a transformation into surface space. Surfaces were 
reconstructed from iBEAT v2.0 (Wang et al., 2023). These surfaces were then aligned into standard 
Buckner40 standard surface space (Dale et al., 1999) using FreeSurfer (Dale et al., 1999).

Additional preprocessing steps were taken for the SRM analyses. For each individual movie 
(including each movie that makes up ‘Child Play’), the fMRI data was time-shifted by 4 s and the break 
after the movie finished was cropped. This was done to account for hemodynamic lag, so that the first 
TR and last TR of the data approximately (Poppe et al., 2021) corresponded to the brain’s response 
to the first and last 2 s of the movie, respectively.

Occipital masks were aligned to the participant’s native space for the SRM analyses. To produce 
these, a mapping from native functional space to standard space was determined. This was enabled 
using non-linear alignment of the anatomical image to standard space using ANTs (Avants et al., 
2011). For infants, an initial linear alignment with 12 DOF was used to align anatomical data to the 
age-specific infant template (Fonov et al., 2011), followed by non-linear warping using diffeomor-
phic symmetric normalization. Then, we used a predefined transformation (12 DOF) to linearly align 
between the infant template and adult standard. For adults, we used the same alignment procedure, 
except participants were directly aligned to adult standard. We used the occipital mask from the MNI 
structural atlas (Mazziotta et al., 2001) in standard space – defined liberally to include any voxel with 
an above zero probability of being labeled as the occipital lobe – and used the inverted transform to 
put it into native functional space.

Analysis
Retinotopy
For our measure of task-evoked retinotopy in infants, we used the outputs of the retinotopy analyses 
from our previous paper (Ellis et al., 2021) that are publicly released. In brief, we performed sepa-
rate univariate contrasts between conditions in the study (horizontal>vertical, high spatial frequen-
cy>low spatial frequency). We then mapped these contrasts into surface space. Then, in surface space 
rendered by AFNI (Cox, 1996), we demarcated the visual areas V1, V2, V3, V4, and V3A/B using tradi-
tional protocols based on the meridian map contrast (Wandell et al., 2007). We traced lines perpen-
dicular and parallel to the area boundaries to quantify gradients in the visual areas. The anatomically 
defined areas of interest Dale et al., 1999 used in Figure 2 were available in this standard surface 
space. The adult data were also traced using the same methods as infants (described previously [Ellis 
et al., 2021]) by one of the original infant coders (CE).

Homotopy
The homotopy analyses compared the time course of functional activity across visual areas in different 
hemispheres of each infant. For the participants that had more than one movie in a session (N=9), all 
the movies were concatenated along with burnout time between the movies (mean number of movies 
per participant = 2.7, range: 1–6, mean duration of movies = 540.7 s, range: 186–1116). For the areas 
that were defined with the retinotopy task (average number of areas traced in each hemisphere = 7.3, 
range: 6.0–8.0), the functional activity was averaged within area and then Pearson correlated between 
all other areas. The resulting cross-correlation matrix was Fisher Z transformed before different cells 
were averaged or compared. If infants did not have an area traced then those areas were ignored in 
the analyses. We grouped visual areas according to stream, where areas that are more dorsal of V1 
were called ‘dorsal’ stream and areas more ventral were called ‘ventral’ stream. To assess the func-
tional similarity of visual areas, Fisher Z correlations between the same areas in the same stream were 
averaged, and compared to the correlations of approximately equivalent areas from different streams 
(e.g. dorsal V2 compared with ventral V2). The averages for each of the two conditions (same stream 
versus different stream) were evaluated statistically using bootstrap resampling (Efron and Tibshirani, 
1986). Specifically, we computed the mean difference between conditions in a pseudosample, gener-
ated by sampling participants with replacement. We created 10,000 such pseudosamples and took 
the proportion of differences that showed a different sign than the true mean, multiplied by two to 
get the two-tailed p-value. To evaluate how distance affects similarity, we additionally compared with 
bootstrap resampling the Fisher Z correlations of areas across hemispheres in the same stream: same 
area to adjacent areas (e.g. ventral V1 with ventral V2), to distal areas (e.g. ventral V1 with ventral 

https://doi.org/10.7554/eLife.92119
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V3). Before reporting the results in the figures, the Fisher Z values were converted back into Pearson 
correlation values.

As an additional analysis to the one described above, we used an atlas of anatomically defined 
visual areas from adults (Wang et al., 2015) to define both early and later visual areas. Specifically, 
we used the areas labeled as part of the ventral and dorsal stream (excluding the intraparietal sulcus 
and frontal eye fields since they often cluster separately [Haak and Beckmann, 2018]), and then aver-
aged the functional response within each area. The functional responses were then correlated across 
hemispheres, as in the main analysis. MDS was then performed on the cross-correlation matrix, and 
the dimensionality that fell below the threshold for stress (0.2) was chosen. In this case, that was a 
dimensionality of 2 (stress = 0.076). We then visualized the resulting output of the data in these two 
dimensions.

Independent component analysis
To conduct ICA, we provided the preprocessed movie data to FSL’s MELODIC (Beckmann et  al., 
2005). Like in the homotopy analyses, we used all of the movie data available per session. The algo-
rithm found a range of components across participants (M=76.4 components, range: 31–167). With 
this large number of possible components, an individual coder (CE), sorted through them to determine 
whether each one looked like a meridian map, spatial frequency map, or neither (critically, without 
referring to the ground truth from the retinotopy task). We initially visually inspected each component 
in volumetric space, looking for the following features: First, we searched for whether there was a 
strong weighting of the component in visual cortex. Second, we looked for components that had a 
symmetrical pattern in visual cortex between the two hemispheres. To identify the spatial frequency 
maps, we looked for a continuous gradient emanating out from the early visual cortex. For meridian 
maps, we looked for sharp alternations in the sign of the component, particularly near the midline 
of the two hemispheres. Based on these criteria, we then chose a small set of components that were 
further scrutinized in surface space. On the surface, we looked for features that clearly define a visual 
map topography. Again, this selection process was blind to the task-evoked retinotopic maps, so that 
a person without retinotopy data could take the same steps and potentially find maps. For the adult 
participants who were analyzed, the components were selected before those participants were retino-
topically traced, in order to minimize the potential contamination that could occur when performing 
these manual steps close in time.

These components were then tested against that participant’s task-evoked retinotopic maps. If the 
component was labeled as a potential spatial frequency map, we tested whether there was a mono-
tonic gradient from fovea to periphery. Specifically, we measured the component response along lines 
drawn parallel to the area boundaries, averaged across these lines, and then correlated this pattern 
with the same response in the actual map. The absolute correlation was used because the sign of ICA 
is arbitrary. For each participant, we then ranked the components to ask if the ones that were chosen 
were the best ones possible out of all those derived from MELODIC. To test whether the identified 
components were better than the non-identified components, we ranked all the components correla-
tion to the task-evoked maps. This ranking was converted into a percentile, where 100% means it 
is the best possible component. We took the identified component’s percentile (or averaged the 
percentiles if there were multiple components chosen) and compared it to chance (50%). This differ-
ence from chance was used for bootstrap resampling to evaluate whether the identified components 
were significantly better than chance. We performed the same kind of analysis for meridian maps, 
except in this case the lines used for testing were those drawn perpendicular to the areas. In this case, 
we were testing whether the components showed oscillations in the sign of the intensity.

To evaluate whether components resembling retinotopic maps arise by chance, we misaligned the 
functional and anatomical data for a subset of participants and manually relabeled them. If retino-
topic components are identified at the same rate in the misaligned data as the original data, this 
would support the concern that the selection process finds structure where there is none. For each 
participant, we aligned the components to standard surface space and then flipped the labels for left 
and right hemispheres. Loading these flipped files as if they were correctly aligned had the effect of 
rolling the functional signals with respect to the anatomy of the cortical surface. Specifically, because 
the image files are always read in the same order, but the hemispheres differ in the mosaic alignment 
of nodes in surface space, this flipping transposed voxels from early visual cortex laterally to the 
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approximate position of the lateral occipital cortex and vice versa, while preserving smoothness. Of 
the 15 total participants, 9 were excluded from this analysis because they had partial volumes (e.g. 
missing the superior extent of the parietal lobe) such that their rolled data in surface space contained 
tell-tale signs (e.g. missing voxels were now in an unrealistic place) that precluded blind coding.

To set up the blind test for the coder, the rolled components from the 6 remaining participants 
were intermixed with an equal number of their original components and then the labels (as orig-
inal or rolled) were hashed. A coder was given all of the original and rolled components with their 
hashed names and categorized each one as a spatial frequency component, meridian component, 
or neither. Once completed, these responses were cross-referenced against the unhashed names to 
determine whether the components the coder selected as retinotopic had been rolled. The propor-
tion of selected components that were original (versus rolled) was compared against chance (50%) 
with a binomial test.

Shared response modeling
We based our SRM analyses on previous approaches using hyperalignment (Guntupalli et al., 2016) 
and adapted them for our sample. SRM embeds the brain activity of multiple individuals viewing 
a common stimulus into a shared space with a small number of feature dimensions. Each voxel of 
each participant is assigned a weight for each feature. The weight reflects how much the voxel loads 
onto that feature. For our study, the SRM was either trained on infant movie-watching data or adult 
movie-watching data to learn the shared response, and the mapping of the training participants into 
this shared space. For the infant SRM, we used a leave-one-out approach. We took a movie that the 
held-out infant saw (e.g. ‘Aeronaut’) and considered all other infant participants that saw that movie 
(including additional participants without any retinotopy data). We fit an SRM model on all of the 
participants except the held-out one. This model has 10 features, as was determined based on cross-
validation with adult data (Figure 5—figure supplement 1). We used an occipital anatomical mask 
to fit the SRM. Using the learned individual weight matrices, the retinotopic maps from the infants 
in the training set were then transformed into the shared space and averaged across participants. 
The held-out participant’s movie data were used to learn a mapping to the learned SRM features. By 
applying the inverse of this mapping, we transformed the averaged visual maps of the training set in 
shared space into the brain space of the held-out participant to predict their visual maps. Using the 
same methods as described for ICA above, we compared the task-evoked and predicted gradient 
responses. These analysis steps were also followed for the adult SRM, with the difference being that 
the group of participants used to create the SRM model and to create the averaged visual maps were 
adults. As with the infant SRM, additional adult participants without retinotopy data were used for 
training. Across both types of analysis, the held-out participant was completely ignored when fitting 
the SRM, and no retinotopy data went into training the SRM.

To test the benefit of SRM, we performed a control analysis in which we scrambled the movie 
data from the held-out participant before learning their mapping into the shared space. Specifically, 
we flipped the time course of the data so that the first timepoint became the last, and vice versa. By 
creating a mismatch in the movie sequence across participants, this procedure should result in mean-
ingless weights for the held-out participant and, in turn, the prediction of visual maps using SRM will 
fail. We compared ‘real’ and ‘flipped’ SRM procedures by computing the difference in fit (transformed 
into Fisher Z) for each movie, and then averaging that difference within participant across movies. 
Those differences were then bootstrap resampled to evaluate significance. We also performed boot-
strap resampling to compare the ‘real’ SRM accuracy when using infants versus adults for training.

Anatomical alignment test
We performed a second type of between-participant analysis in addition to SRM. Specifically, we 
anatomically aligned the retinotopic maps from other participants to make a prediction of the map in 
a held-out participant. To achieve this, we first aligned all spatial frequency and meridian maps from 
infant and adult participants with retinotopy into the Buckner40 standard surface space (Dale et al., 
1999). For each infant participant, we composed a map from the average of the other participants. 
The other participants were either all the other infants or all the adult participants. We then used the 
lines traced parallel to the area boundaries (for spatial frequency) or perpendicular to the area bound-
aries (for meridian) to extract gradients of response in the average maps. These gradients were then 
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correlated with the ground-truth gradients (i.e. the alternations in sensitivity in the held-out infant 
using lines traced from that participant). These correlations were then compared to SRM results within 
participants using bootstrap resampling. If a participant had multiple movies worth of data, then they 
were averaged prior to this comparison.
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Data availability
Our experiment display code can be found here: https://github.com/ntblab/experiment_menu/tree/​
Movies/ and https://github.com/ntblab/experiment_menu/tree/retinotopy/ (Ellis et al., 2020b). The 
code used to perform the data analyses is available at https://github.com/ntblab/infant_neuropipe/​
tree/predict_retinotopy/, (Ellis et al., 2020c) this code uses tools from the Brain Imaging Analysis Kit 
(Kumar et al., 2020a); https://brainiak.org/docs/. Raw and preprocessed functional and anatomical 
data is available on Dryad.
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Appendix 1

Appendix 1—table 1. Demographic and dataset information for infant participants in the study.
‘Age’ is recorded in months. ‘Sex’ is the assigned sex at birth. ‘Retinotopy areas’ is the number of 
areas segmented from task-evoked retinotopy, averaged across hemispheres. Information about 
the movie data is separated based on analysis type: whereas all movie data is used for homotopy 
analyses and independent component analyses (ICA), a subset of data is used for shared response 
modeling (SRM). ‘Num.’ is the number of movies used. ‘Length’ is the duration in seconds of the 
run used for these analyses (includes both movie and rest periods). ‘Drops’ is the number of movies 
that include dropped periods. ‘Runs’ says how many runs or pseudoruns of movie data there were. 
‘Gaze’ is the percentage of the data where the participants were looking at the movie.

ID Age Sex Retinotopy Areas

Homotopy and ICA SRM

Num. Length Drops Runs Gaze Num. Gaze

s2077_1_1 4.8 M 6 1 430 0 1 97 1 97

s2097_1_1 5.2 M 8 1 186 0 1 96 1 96

s4047_1_1 5.5 F 7.5 1 186 0 1 99 1 99

s7017_1_3 7.2 F 7 4 744 2 2 97 2 98

s7047_1_1 9.6 F 7 1 432 0 1 91 1 91

s7067_1_4 10.6 F 7.5 6 1110 3 2 98 3 99

s8037_1_2 12.2 F 7.5 1 186 0 1 95 1 95

s4607_1_4 13 F 7 3 558 1 1 93 2 90

s1607_1_4 14.4 M 6 1 372 0 2 93 1 93

s6687_1_4 15.4 F 8 1 186 0 1 82 1 82

s8687_1_5 17.1 F 8 1 186 0 1 98 1 98

s6687_1_5 18.1 F 8 5 930 2 2 94 3 92

s4607_1_7 18.5 F 7.5 4 744 2 2 78 0 NaN

s6687_1_6 20.1 F 6.5 6 1116 2 3 97 2 98

s8687_1_8 23.1 F 7.5 4 744 2 1 97 0 NaN

Mean 13 . 7.3 2.7 540.7 0.9 1.5 93.7 1.3 94.5

https://doi.org/10.7554/eLife.92119
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Appendix 1—table 2. Number of participants per movie.
The first column is the movie name, where ‘Drop-’ indicates that it was a movie containing 
alternating epochs of blank screens. ‘SRM’ (shared response modeling) indicates whether the movie 
is used in SRM analyses. The movies that are not included in SRM are used for homotopy analyses 
and independent component analyses (ICA). ‘Ret. infants’ and ‘Ret. adults’ refers to the number 
of participants with retinotopy data that saw this movie. ‘Infant SRM’ and ‘Adult SRM’ refer to 
the number of additional participants available to use for training the SRM but who did not have 
retinotopy data. ‘Infant Ages’ is the average age in months of the infant participants included in the 
SRM, with the range of ages included in parentheses.

Movie name SRM Ret. infants Ret. adults Infant SRM Infant Ages Adult SRM

Child_Play 1 2 8 20 13.7 (3.3–32.0) 9

Aeronaut 1 8 8 35 10.1 (3.6–20.1) 32

Caterpillar 1 3 8 6 13.0 (6.6–18.2) 0

Meerkats 1 4 8 6 13.4 (7.2–18.2) 0

Mouseforsale 1 3 8 4 14.7 (7.2–20.1) 0

Elephant 0 1 0 0 0

MadeinFrance 0 1 0 0 0

Clocky 0 1 0 0 0

Gopher 0 1 0 0 0

Foxmouse 0 2 0 0 0

Drop-Caterpillar 0 4 0 0 0

Drop-Meerkats 0 3 0 0 0

Drop-Mouseforsale 0 1 0 0 0

Drop-Elephant 0 1 0 0 0

Drop-MadeinFrance 0 1 0 0 0

Drop-Clocky 0 2 0 0 0

Drop-Ballet 0 1 0 0 0

Drop-Foxmouse 0 1 0 0 0

https://doi.org/10.7554/eLife.92119
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Appendix 1—table 3. Details for each movie used in this study.
‘Name’ specifies the movie name. ‘Duration’ specifies the duration of the movie in seconds. Movies 
were edited to standardize length and remove inappropriate content. ‘Sound’ is whether sound was 
played during the movie. These sounds include background music, animal noises, and sound effects, 
but no language. ‘Description’ gives a brief description of the movie, as well as a current link to it 
when appropriate. All movies are provided in the data release.
Name Duration Sound Description

Child_Play 406 0

Four photo-realistic clips from `Daniel Tiger' showing children playing. The clips showed the following: 1. 
children playing in an indoor playground (84 s); 2. a family making frozen banana desserts (64 s); 3. a child 
visiting the doctor (115 s); 4. children helping with indoor and outdoor chores (143 s).

Aeronaut 180 0
A computer-generated segment from a short film titled ”Soar'' (https://vimeo.com/148198462)  
and described here (Yates et al., 2022).

Caterpillar 180 1

A computer-generated segment from a short film titled ”Sweet Cocoon'' (https://www. 
youtube.com/watch?v=yQ1ZcNpbwOA). This video depicts a caterpillar trying to fit into its cocoon so it  
can become a butterfly.

Meerkats 180 1
A computer-generated segment from the short film titled ”Catch It'' (https://www.youtube.com/watch?v=​
c88QE6yGhfM). It depicts a gang of meerkats who take back a treasured fruit from a vulture.

Mouse for 
Sale 180 1

A computer-generated segment from a short film of the same name (https://www.youtube.com/watch?v=​
UB3nKCNUBB4). It shows a mouse in a pet store who is teased for having big ears.

Elephant 180 1
A computer-generated segment from a short film of the same name (https://www.youtube.com/watch?v=​
h_aC8pGY1aY). It shows an elephant in a china shop.

Made in 
France 180 1

A computer-generated segment from a short film of the same name (https://www.youtube.com/watch?v=​
Her3d1DH7yU). It shows a mouse making cheese.

Clocky 180 1
A computer-generated segment from a short film of the same name (https://www.youtube.com/watch?v=​
8VRD5KOFK94). It shows a clock preparing to wake up its owner.

Gopher 180 1
A computer-generated segment named `Gopher broke' (https://www.youtube. 
com/watch?v=tWufIUbXubY). It shows a gopher collecting food.

Foxmouse 180 1
A computer-generated segment named `The short story of a fox and a mouse' (https://www.youtube. 
com/watch?v=k6kCwj0Sk4s). It shows a fox playing with a mouse in the snow.

Ballet 180 1
A computer-generated segment named `The Duet' (https://www.youtube.com/watch?v=GuX52wkCIJA).  
This is an artistic rendition of growing up and falling in love.
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Appendix 1—table 4. Correlations between infant gradients and the spatial average of other 
infants or adults.
For each participant, all other participants with retinotopy data (adults or infants) were aligned to 
standard surface space and averaged. The traced lines from the held-out participant were then 
applied to this average. The resulting gradients were correlated with the held-out participant and 
the correlation is reported here. This was done separately for meridian maps and spatial frequency 
maps.

ID

Adults Infants

Spatial freq. Meridians Spatial freq. Meridians

s2077_1_1 0.85 0.77 0.89 0.81

s2097_1_1 0.66 0.72 0.66 0.65

s4047_1_1 0.86 0.78 0.94 0.82

s7017_1_3 0.9 0.92 0.93 0.92

s7047_1_1 0.43 0.65 0.56 0.64

s7067_1_4 0.87 0.67 0.92 0.61

s8037_1_2 0.92 0.73 0.93 0.83

s4607_1_4 0.77 0.97 0.74 0.94

s1607_1_4 0.93 0.82 0.92 0.86

s6687_1_4 0.87 0.9 0.93 0.93

s8687_1_5 0.97 0.89 0.98 0.83

s6687_1_5 0.92 0.81 0.97 0.91

s4607_1_7 0.85 0.91 0.8 0.86

s6687_1_6 0.92 0.94 0.86 0.97

s8687_1_8 0.89 0.93 0.9 0.88

Mean 0.84 0.83 0.86 0.83

https://doi.org/10.7554/eLife.92119
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