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What are the contents of the infant mind? In the last decade,

computational advances in fMRI have allowed researchers

access to the internal representations of adults. Applied

similarly in infants, fMRI stands to revolutionize our

understanding of cognitive development. By measuring

representations at their source, infant fMRI overcomes some of

the limitations of behavioral measures. We discuss example

domains where this approach could be fruitful, including

episodic memory, semantic cognition, spatial representations,

and theory of mind. In these and other areas, the richness of

fMRI data could give new insight into how infants represent the

world and potentially help resolve ongoing debates in

developmental science.
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Introduction
Psychologists have developed tools to measure infant

cognition through behavior, revolutionizing our under-

standing of the infant mind. Despite this progress, how-

ever, the infant mind remains difficult to decipher, in part

because of limitations in infant behavior. In this review,

we consider an approach to understanding the infant

mind that has recently gained traction: functional

magnetic resonance imaging (fMRI) in awake infants

performing tasks. fMRI is uniquely positioned to extract

rich, multifaceted information about infant cognition. We

discuss our framework for deeply measuring infant cog-

nition. We then consider how awake infant fMRI can

reveal internal states that may not cleanly manifest in

infant behavior, and may help resolve extant debates in

the developmental literature. Altogether, we hope to
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highlight the value of using awake infant fMRI for

understanding deeper aspects of the infant mind.

A deep measure of infant cognition
Given the constraints of the behavioral repertoire of

infants — an inability to speak, understand complex

instructions, execute complex actions, etc. — researchers

have developed clever measures of cognition, such as

looking-time duration [1], pupillometry [2], head-turn

preferences [3], reaching [4], and locomoting [5]. How-

ever, it is increasingly evident that when the goal is to

index infants’ mental states, reliance on one simple

behavioral measure can be problematic [6��]. Consider

showing an infant two images and asking them: ‘where is

the kitty?’ (Figure 1). From behavior alone, it can be

difficult to ascertain whether infants represent the mean-

ing of the word kitty. To help resolve this issue, neuroim-

aging techniques such as electroencephalography (EEG)

and functional near-infrared spectroscopy (fNIRS) [7]

have increasingly been utilized in infant research. These

techniques provide a powerful window into the dynamics

and representations of the infant mind.

Here, we focus instead on fMRI, a technique that is emerging

as a way to study infant cognition but has a long and successful

history in helping understand child, adolescent, and adult

cognition [9]. Although MRI and fMRI are commonly used

for understanding the structure and resting connectivity of

sleeping infants [7], fMRIin awake infantsperforming tasks is

the most direct way to study infant cognition. As a complex

and rich data source, fMRI can tap into internal representa-

tions that may otherwise be overlooked in behavior and that

may not be apparent in scalp-based measurements from EEG

and fNIRS. In the last decade, computational advances [10]

have also made ‘mind-reading’ a reality with fMRI. Research-

ers can construct models to decode what an individual is

seeing [11], predicting [12], and recalling [13]. Additionally,

the high spatial resolution of fMRI allows for indexing multi-

ple representations during the same task, such as what some-

one is simultaneously seeing and predicting [14]. This is

particularly promising for extracting multiple cognitively

relevant functions during complex stimuli such as movies

[15]. For developmental research, these naturalistic stimuli

[16,17] may be especially important for simultaneously tap-

ping into multiple cognitive functions without requiring

multiple experiments.

Initial discoveries
So far, only three studies that used fMRI in awake infants

during cognitive tasks have been published [18–20]. The
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Figure 1
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Ambiguity of behavioral measures given internal mental states. An infant is tested on their word knowledge. A parent or experimenter prompts the

infant to look at the ‘kitty’ while showing a picture of a cat and a dog. (a) The infant correctly looks at the cat picture. It is assumed, especially

based on performance aggregated across trials, that this behavior is possible because the infant has a mental representation of the word or

concept kitty that was matched to the picture of the cat. If true, behavior is an accurate measure of cognition. However, this same behavior can

occur with an entirely different mental substrate. (b) For instance, the behavior could be driven by the cat being more attractive, familiar, unusual,

having pointy ears, whiskers, or a long tail, etc. Or, the shape of the cat may intrinsically be a better match to the phonological features of the

word ‘kitty’ without any real comprehension [8]. In these cases, the behavior is attributed to the wrong cognitive process — semantic/conceptual

rather than perceptual or linguistic. (c) Conversely, the infant may possess the appropriate mental representation but lack the motivation or ability

to exert an interpretable behavioral response. Hence, by accessing an infant’s mental representation more directly, it may be possible to

circumvent the ambiguity of infant behavior.
first study was fortuitous: while investigating speech

processing in sleeping 3-month-olds, six infants remained

awake and attentive. Speech processing was evident in

auditory regions of all infants, with sensical and non-

sensical speech distinguished in the angular gyrus. How-

ever, only in awake infants was the dorsolateral prefrontal

cortex also involved in processing sensical speech [18].

This suggested that the prefrontal cortex, thought to be
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minimally functional in infancy, may play a larger role in

early development than previously assumed [21]. The

second and third studies examined visual processing. In

7-week-olds, functional responses to motion were adult-

like in anatomical localization, but differences in early

visual cortex suggested some later refinement of motion

processing [19]. In 6-month-olds, the functional responses

evoked by faces and scenes were localized to similar
www.sciencedirect.com
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regions as adults. However, these regions were less selec-

tive to their preferred category than in adults [20].

Together, these pioneering studies demonstrate the fea-

sibility of awake infant fMRI for revealing previously

unknown properties of the infant mind.

Ensuring that infants are awake, still, and attentive long

enough to collect adequate data are some of the many

challenges of this work. Over the last several years, our lab

has developed a new protocol for awake infant fMRI [22��

]. To minimize movement, infants are positioned on a

vacuum pillow within reach of a parent or experimenter.

The comfort and state of the infant are monitored con-

tinuously via a camera in the scanner bore. The infant’s

face can be seen because only the bottom half of the head

coil is used; it provides whole-brain coverage and reason-

able signal-to-noise, given the smaller head size. Remov-

ing the top half of the head coil also allows good visibility

by the infant of stimuli projected onto the bore ceiling

above their face. The code that runs the experimental

tasks is robust and flexible, allowing for breaks and

switching between tasks. Together, these methods have

enabled us to collect fMRI data from almost 200 sessions

to date with an average success rate of one usable experi-

ment per session (some infants have none, others com-

plete 3–4 tasks). Several studies of infant perception,

attention, learning, and memory are ongoing. For exam-

ple, we have shown that key regions of adult attention

networks, including in the frontal lobe, are recruited to

orient infant attention, as measured behaviorally with eye

movements [23]. Additionally, we have found that the

infant hippocampus can quickly learn regularities from

the environment, despite this memory system often being

considered immature in infancy [24]. These initial steps

highlight how fMRI has the potential to fundamentally

change our understanding of early development. Below

we explore the distinct advantages of fMRI as a deeper

method to understand the infant mind.

Unpacking behavior
Given the potential ambiguity of infant behavior, devel-

opmental researchers carefully design studies to control

for alternative explanations. Nonetheless, debates remain

over whether certain behavioral outcomes can be

explained by alternative accounts that were not consid-

ered. Furthermore, partial or failed replications suggest

that additional measures could help resolve the cognitive

capacities of infants [25]. While fMRI is valuable for a

number of cognitive domains, it holds particular promise

in understanding the characteristics of infant episodic

memory, semantic knowledge, how they represent space,

and how they reason about other minds.

Episodic memory

Early development is a period of immense learning, yet

specific memories of experience obtained during

infancy do not persist over time. This phenomena,
www.sciencedirect.com 
called infantile amnesia, continues to be a developmen-

tal puzzle [26�]. Despite illuminating behavioral

research on the memory capacities of infants [27], it

remains unclear which phases of the episodic memory

process — encoding, consolidation, and/or retrieval —

contribute to memory failures [28]. In adults, certain

regions of the brain, such as the hippocampus, are

associated with subsequent recall [29]. Evidence that

memory retrieval in the hippocampus relates to later

explicit memory was also shown recently with fMRI in

sleeping toddlers [30,31�].

fMRI with awake infants provides an additional oppor-

tunity to measure behavior and brain states simulta-

neously to understand how memory processes are

supported in the infant brain. Combining fMRI and

eye-tracking can answer a fundamental question in

developmental science: namely, how does memory

recall relate to looking behavior? When an infant is

shown a stimulus that they have seen before along with

a new stimulus, they sometimes look longer at the

familiar stimulus and other times look longer at the

novel stimulus [32]. Such novelty preferences have

been hypothesized to reflect more complete encoding

of prior viewings, whereas familiarity  preferences may

result from impoverished representations [33,34]. The

ability of fMRI to access internal states provides a

direct way to measure memory integrity by comparing

the similarity of a representation when it is first

encoded and when it is retrieved [35], which can in

turn be related to looking-time measures. Moreover, it

may reveal that novelty and familiarity  preferences do

not reflect two sides of the same learning process, but

rather the control of attention by multiple memory

traces [36].

fMRI additionally makes it possible to track how repre-

sentations change over delay and development, which

may be important to understanding the nature of infantile

amnesia. This could be accomplished without an explicit

or verbal retrieval task, for example, by measuring the

reinstatement of patterns of neural activity from encoding

during subsequent experience, rest, or sleep [37]. Thus,

early episodic memory could be assessed by showing

infants videos of complex, dynamic scenes during fMRI

and testing if they later recall these memories neurally

when cued. By targeting different aspects of the memory,

this approach makes it possible to distinguish specific

computations underlying episodic memory that have

been measured with fMRI in adults, such as pattern

separation, pattern completion, and relational binding

[12]. These computations are difficult to assess behavior-

ally [38], and in adults rely on deep-brain structures like

the hippocampus that are inaccessible to other techniques

such as EEG and fNIRS. Thus, fMRI is a promising way

to investigate the neural mechanisms of infant episodic

memory.
Current Opinion in Behavioral Sciences 2021, 40:5–11
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Language and semantic networks

Although almost a year passes before infants produce

their first words, they are processing speech even while

in the womb [39]. They can understand some concrete

words by 6 months [40] and can segment words from

continuous speech streams by 8 months [41]. However,

infants’ understanding of semantic relationships between

words is hard to measure, and the story of conceptual

development often begins in young childhood [42]. In

adults, co-occurrences in large text corpora can be used to

accurately predict fMRI activity to concrete words [43]

and abstract concepts [44]. Models could similarly be

constructed using early language corpora [45,46] and

compared to neural representations of words in the infant

brain. Alternatively, infant semantic space could be deter-

mined in a more data-driven way through representa-

tional similarity analysis, using the similarity of neural

patterns evoked by words to infer their semantic related-

ness. Representational similarity in some regions of the

brain may be governed by shared perceptual features of

the words themselves (e.g. book and boot) or of their

referents (e.g. milk and juice), whereas other regions may

represent semantic features divorced from perceptual

features (e.g. book and table; milk and refrigerator), as

has been found in adults [47�]. The high spatial resolution

of fMRI, unique for non-invasive neuroimaging, may be

especially important for distinguishing these representa-

tional spaces.

Importantly, a task with behavioral responses is also not

required to study the semantic representations of infants

with fMRI. Indeed, from task-free movie-watching alone,

researchers can construct a semantic space [48] and pro-

vide a text caption of the current scene [49]. This makes it

possible to investigate infant conceptual knowledge lon-

gitudinally using a consistent paradigm. In this way, fMRI

could demonstrate how the semantic network grows as

infants acquire new word knowledge [50].

Navigating space

Infants appear to have a rich understanding of the social

and physical world. Geometric and spatial relations are

one of the building blocks of this understanding. By

5 months, infants are surprised when objects disappear

and reappear in different spatial locations [51], and by

9 months, infants correctly look at goal locations when

starting from different positions [52]. In the brain, rodent

studies have shown that the infant hippocampus and

entorhinal cortex code for places and directions during

navigation through an environment [53]. At the same

time, human infants can show relational errors, such as

an inability to find objects when turned around [54].

Indeed, many aspects of spatial processing, such as coding

metric distance and spatial perspective-taking, develop

slowly [55�]. Hence, it remains unclear how precisely

infants can represent space, which is especially hard to

investigate before infants develop locomotor capacities.
Current Opinion in Behavioral Sciences 2021, 40:5–11 
fMRI with awake infants could be used to test early

spatial representations by examining relevant brain sys-

tems identified in adults [56]. The spatial layout of a

scene (e.g. the presence and arrangement of walls) is

represented in the occipital place area in a way that is

invariant to texture and other visual properties [57].

Meanwhile, the category of a place (e.g. a coffee shop)

is represented in the parahippocampal place area regard-

less of real-world location or proximity [58]. Broader maps

of an environment are represented in entorhinal cortex

and the hippocampus, with neural pattern similarity

higher when viewing photographs of landmarks that

are closer together in the real world [59]. Notably, several

of these brain regions are medial, ventral, and/or subcor-

tical, and thus cannot be directly measured with scalp-

based techniques. Whether human infants navigate space

with place and grid representations in the hippocampus

and entorhinal cortex, respectively, is unknown but also

potentially addressable with fMRI and virtual reality [60].

Although adults control their own navigation in most of

these studies, viewing movement through space may be

sufficient.

Theory of mind and false beliefs

The ability to represent that another person has a differ-

ent belief than you or that their belief conflicts with

reality was initially thought to develop around 4 years

[61]. Recent studies have shown that infants can in fact

possess such theory of mind, including predicting and

representing the goals of others [62]. At the same time,

there have been several failures to replicate infant false

belief studies [63]. These discrepancies led to two

accounts of infant theory of mind: The continuous account

posits that infants represent the beliefs of others in a

similar way to older children [64]. Early failures on certain

tests of theory of mind, such as language-heavy tasks, are

thought to reflect limitations in executive function [65�].
The alternative two-system account proposes that there is

both an early developing, implicit system and a later

developing, explicit system [66]. This account distin-

guishes between explicit tasks, in which participants need

to demonstrate an understanding that what somebody

else believes to be true can differ from their own knowl-

edge, and implicit tasks, in which participants look longer

when someone performs an action that is inconsistent

with their knowledge or show anticipatory looking con-

sistent with the other’s belief. Success on implicit theory

of mind tasks may not always result from representing

another person as agentic, as much as using perceptual

cues, which has been used to explain the performance of

other species [67].

These two accounts make different predictions for the

internal representations of infants. According to the con-

tinuous account, the same brain regions and patterns of

activity should be recruited during theory of mind tasks in
www.sciencedirect.com
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infancy as later in development [68]. For example, natu-

ralistic viewing of a movie that evokes theory of mind

induces similar activity in the temporoparietal junction

between adults and children, and between young chil-

dren who do and do not pass a battery of theory of mind

tests [69�]. Importantly, fMRI has the resolution to dis-

tinguish the temporoparietal junction and the nearby

superior temporal sulcus, which is involved in social

perception but also many other functions [70], whereas

other techniques lack this precision. According to the

two-system account, there should be a dissociation

between early and later development in terms of the

nature or localization of representations related to

theory of mind. In preschoolers, success on implicit

and explicit theory of mind tasks is neurally dissociated

in terms of brain structure [71], fitting with previous work

showing a behavioral dissociation [72]. Investigations in

infants could provide further insight into whether theory

of mind is quantitatively or qualitatively different across

development.

Conclusion
Awake infant fMRI allows for a deeper characterization of

cognition and development by revealing representations

that may not be behaviorally expressed or that are inac-

cessible to other neuroimaging techniques, and by dis-

tinguishing between mechanisms that could jointly drive

behavior under different circumstances. The combina-

tion of fMRI as a sensitive tool with advanced data

analysis methods has dramatically accelerated progress

in cognitive neuroscience over recent years. Our hope is

that importing these approaches from adult cognitive

neuroscience into the study of infant cognition could

likewise advance the field and unlock mysteries of how

the infant mind functions and develops.

Conflict of interest statement
Nothing declared.

Acknowledgements
This work was supported by funding from the James S McDonnell
Foundation 21st Century Science Initiative Understanding Human
Cognition Opportunity Award (10.37717/2020-1208) and the Canadian
Institute for Advanced Research to NBT-B, and the National Science
Foundation Graduate Research Fellowship Program to TSY.

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

� of special interest
�� of outstanding interest

1. Sim ZL, Xu F: Another look at looking time: surprise as rational
statistical inference. Top Cogn Sci 2019, 11:154-163.

2. Zhang F, Emberson LL: Using pupillometry to investigate
predictive processes in infancy. Infancy 2020, 25:758-780.

3. Junge C, Everaert E, Porto L, Fikkert P, de Klerk M, Keij B,
Benders T: Contrasting behavioral looking procedures: a case
www.sciencedirect.com 
study on infant speech segmentation. Infant Behav Dev 2020,
60:101448.

4. Cuevas K, Bell MA: Developmental progression of looking and
reaching performance on the A-not-B task. Dev Psychol 2010,
46:1363-1371.

5. Adolph KE: Oh, behave! Infancy 2020, 25:374-392.

6.
��

LoBue V, Reider LB, Kim E, Burris JL, Oleas DS, Buss KA, Pérez-
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