
RESEARCH ARTICLE PSYCHOLOGICAL AND COGNITIVE SCIENCES

Neural event segmentation of continuous experience in
human infants
Tristan S. Yatesa, Lena J. Skalabana, Cameron T. Ellisb , Angelika J. Bracherc,d , Christopher Baldassanoe, and Nicholas B. Turk-Brownea,f,1

Edited by Linda Smith, Indiana University Bloomington, Bloomington, IN; received January 9, 2022; accepted August 9, 2022

How infants experience the world is fundamental to understanding their cognition and
development. A key principle of adult experience is that, despite receiving continuous
sensory input, we perceive this input as discrete events. Here we investigate such event
segmentation in infants and how it differs from adults. Research on event cognition
in infants often uses simplified tasks in which (adult) experimenters help solve the
segmentation problem for infants by defining event boundaries or presenting discrete
actions/vignettes. This presupposes which events are experienced by infants and leaves
open questions about the principles governing infant segmentation. We take a different,
data-driven approach by studying infant event segmentation of continuous input. We
collected whole-brain functional MRI (fMRI) data from awake infants (and adults,
for comparison) watching a cartoon and used a hidden Markov model to identify
event states in the brain. We quantified the existence, timescale, and organization of
multiple-event representations across brain regions. The adult brain exhibited a known
hierarchical gradient of event timescales, from shorter events in early visual regions
to longer events in later visual and associative regions. In contrast, the infant brain
represented only longer events, even in early visual regions, with no timescale hierarchy.
The boundaries defining these infant events only partially overlapped with boundaries
defined from adult brain activity and behavioral judgments. These findings suggest that
events are organized differently in infants, with longer timescales and more stable neural
patterns, even in sensory regions. This may indicate greater temporal integration and
reduced temporal precision during dynamic, naturalistic perception.

event cognition | early development | timescale hierarchy | naturalistic movies | fMRI

From the moment we are born, our sensory systems are bombarded with information.
Infants must make sense of this input to learn regularities in their environment (1, 2)
and remember objects and events (3, 4). How infants overcome this perceptual challenge
has consequences for other cognitive abilities, such as social competence and language
(5). Adults segment continuous experience into meaningful events (6), both online (7, 8)
and after the fact (9). This occurs automatically and at multiple timescales (10), allowing
us to perceive the passage of long events (e.g., a talk from a visiting scientist) and to
differentiate or integrate shorter events that compose them (e.g., an impressive results slide
or a funny anecdote). These multiple timescales of event perception can be modulated by
attentional states (11) and goals (10) to support adaptive decision making and prediction
(12). Thus, characterizing event segmentation in infants and how it relates to that of adults
is important for understanding infant perception and cognition.

Research on infant event perception has found that infants are sensitive to complex
event types such as human actions (2, 13, 14) and cartoons (4, 15). Infants recognize the
similarity between target action segments and longer sequences that contain them, with
greater sensitivity to discrete events (e.g., an object being occluded) than to transitions
between events (e.g., an object sliding along the ground) (16, 17). Such findings suggest
that infants not only segment experience at a basic sensory level, in reaction to changes in
low-level properties, but also are capable of segmenting at a more abstract level like adults.
Behavioral measures such as looking time have expanded our understanding of infant
event processing. Yet, such measures provide indirect evidence and may reflect multiple
different underlying cognitive processes. For example, the same amount of looking to
a surprising event could reflect novelty detection or visual memory for components
of the event (18). Thus, infant researchers are increasingly using neural measures such
as electroencephalography (EEG) to study infant event processing. These studies find
differences in brain activity to pauses that disrupt events versus coincide with event
boundaries (19–21). In sum, there is rich evidence across paradigms that infants are
capable of event segmentation and that this guides their processing of ongoing experience.

However, a limitation in the current literature on infant event segmentation is that
it relies on boundaries determined by (adult) experimenters. This reflects an unstated or
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unintended assumption that infants experience the same event
boundaries as adults, which may obscure events that are specific
to either age group. Because behavioral research with infants tests
their looking preferences after part versus whole events (13, 16),
it would be infeasible to test all possible boundary locations and
event durations. Brain imaging has the potential to contribute
to our understanding by circumventing this limitation. Although
most infant EEG studies have followed the behavioral work by in-
troducing pauses at or between predetermined event boundaries,
some adult EEG studies have found signatures of event segmenta-
tion during a continuous sequence of images (22) or a movie (23).
Although similar studies could be performed in infants, EEG may
not have the spatial resolution or sensitivity away from the scalp
to recover event representations in subcortical structures such as
the hippocampus (24) and midline regions such as the precuneus
and medial prefrontal cortex (25), each of which has been shown
to play a distinct role in adult event segmentation (26).

Functional MRI (fMRI) has proved effective at capturing
event representations in adults during continuous, naturalistic
experience (27). In one fMRI approach, behavioral boundaries
from an explicit parsing task are used as event markers to model
fMRI activity during passive movie watching. Regions such as
the superior temporal sulcus and middle temporal area respond
to events at different timescales, with larger responses at coarser
boundaries (8, 28, 29). Other brain regions respond transiently
to different types of event changes, such as character changes in
the precuneus and spatial changes in the parahippocampal gyrus
(8). However, applied to infants, this approach would suffer the
aforementioned limitation of adult experimenters predetermining
event boundaries. An alternative fMRI approach discovers events
in a data-driven manner from brain activity (25, 30), using an
unsupervised computational model to learn stable neural patterns
during movie watching. This model can be fit to different brain
regions to discover a range of event timescales. In adults, sensory
regions process shorter events, whereas higher-order regions pro-
cess longer events, mirroring the topography of temporal receptive
windows (31–33). Moreover, event boundaries in the precuneus
and posterior cingulate best match narrative changes in the movie
(25). Thus, fMRI could reveal fundamental aspects of infant event
perception that cannot otherwise be accessed easily (34–38).

In this study, we collected movie-watching fMRI data from
infants in their first year to investigate the early development
of event perception during continuous, naturalistic experience.
We also collected fMRI data from adults watching the same
movie. We first asked whether the movie was processed reliably
across infants using an intersubject correlation analysis (39). By
comparing each infant to the average of the others, this analysis
isolates the component of fMRI activity shared across infants from
participant-specific responses and noise (40). Eye movements
during movie watching are less consistent in infants than in
adults (41, 42), and thus it was not a given that infant neural
activity would be reliable during the movie. After establishing this
reliability, we then asked whether and how infants segmented the
movie into events using a data-driven computational model. As a
comparison and to validate our methods, we first performed this
analysis on adult data. We attempted to replicate previous work
showing a hierarchical gradient of timescales in event processing
across regions in the adult brain, with more/shorter events in early
sensory regions at the bottom of the hierarchy and fewer/longer
events in associative regions at the top of the hierarchy. This itself
was an open question and extension of prior studies because the
infant-friendly movie we used was animated rather than live action
and was much shorter in length, reducing the range of possible
event durations and the amount of data and statistical power.

With this adult comparison in hand, we tested three hypotheses
about event segmentation in the infant brain. The first hypothesis
is that infants possess an adult-like hierarchy of event timescales
across the brain. This would fit with findings that aspects of adult
brain function, including resting-state networks (43), are present
early in infancy. The second hypothesis is that the infant brain
shows a bias to segment events at shorter timescales than the adult
brain. This would result in a flatter hierarchy in which higher-
order brain regions are structured into a greater number of events,
akin to adult early visual cortex. Such a pattern would fit with
findings that sensory regions mature early in development (38)
and may provide bottom–up input that dominates the function
of (comparatively immature) higher-order regions. This pattern
could also result from the shorter attention span of infants (44).
The third hypothesis is that the infant brain shows a bias to
segment events at longer timescales than the adult brain. This
would also result in a flatter hierarchy, just in reverse, with
fewer events in sensory regions, akin to higher-order regions in
adults. This could reflect attentional limitations that reduce the
number of sensory transients perceived by infants (45), attentional
inertia that sustains engagement through changes (46), or greater
temporal integration in infant visual (47, 48) and multisensory
processing (49, 50). We adjudicate these hypotheses and provide
detailed comparisons between infant and adult event boundaries.

Results

Intersubject Correlation Reveals Reliable Neural Responses in
Infants. We scanned infants (n = 24; 3.6 to 12.7 mo) and adults
(n = 24; 18 to 32 y) while they watched a short, silent movie
(“Aeronaut”) that had a complete narrative arc. To investigate
the consistency of infants’ neural responses during movie watch-
ing, we performed leave-one-out intersubject correlation (ISC),
in which the voxel activity of each individual participant was
correlated with the average voxel activity of all other participants
(39). This analysis was performed separately in adults and infants
for every voxel in the brain and then averaged within eight regions
of interest (ROIs), spanning from early visual cortex (EVC) to
later visual regions (lateral occipital cortex [LOC]), higher-order
associative regions (angular gyrus [AG], posterior cingulate cortex
[PCC], precuneus, and medial prefrontal cortex [mPFC]), and
the hippocampus. Because the movie was silent, we used early
auditory cortex (EAC) as a control region.

Whole-brain ISC was highest in visual regions in adults
(Fig. 1A), similar to prior studies with movies (39, 51). That
said, all eight ROIs were statistically significant in adults
(EVC, M = 0.498, CI = [0.446, 0.541], P < 0.001; LOC,
M = 0.430, CI = [0.391, 0.466], P < 0.001; AG, M = 0.094,
CI = [0.058, 0.127], P < 0.001; PCC, M = 0.143, CI =
[0.097, 0.190],P < 0.001; precuneus,M = 0.160, CI= [0.128,
0.193], P < 0.001; mPFC, M = 0.053, CI = [0.032, 0.077],
P < 0.001; hippocampus, M = 0.047, CI = [0.032, 0.062],
P < 0.001; EAC, M = 0.081, CI = [0.044, 0.115], P < 0.001;
Fig. 1B). Broad ISC in these regions is consistent with what has
been found in prior studies that used longer movies. The one
surprise was EAC, given that the movie was silent (see Discussion
for potential explanations).

ISC was weaker overall in infants than in adults, but again
higher in visual regions compared to other regions. All ROIs
except for EAC were statistically significant in infants (EVC,
M = 0.290, CI = [0.197, 0.379], P < 0.001; LOC, M =
0.206, CI = [0.135, 0.275], P < 0.001; AG, M = 0.079, CI =
[0.030, 0.133], P = 0.002; PCC, M = 0.087, CI = [0.028,
0.154],P = 0.006; precuneus,M = 0.073, CI= [0.030, 0.118],
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Fig. 1. Average leave-one-out ISC in adults and infants. (A) Voxel-wise ISC
values in the two groups, thresholded arbitrarily at a mean correlation value
of 0.10 to visualize the distribution across the whole brain. (B) ISC values
were significant in both adults and infants across ROIs (except EAC in infants).
Dots represent individual participants and error bars represent 95% CIs of the
mean from bootstrap resampling. ***P < 0.001, **P < 0.01, *P < 0.05. ROIs:
EVC, LOC, AG, PCC, precuneus (Prec), mPFC, hippocampus (Hipp), and EAC.

P < 0.001; mPFC, M = 0.073, CI = [0.017, 0.124], P =
0.009; hippocampus, M = 0.059, CI = [0.012, 0.113], P =
0.023; EAC, M = 0.013, CI = [−0.018, 0.039], P = 0.350).
These levels were lower than those in adults in EVC (M = 0.208,
permutation P < 0.001), LOC (M = 0.224, P < 0.001),
precuneus (M = 0.087, P = 0.004), and EAC (M = 0.068,
P = 0.007); all other regions did not differ between groups
(AG, M = 0.015, P = 0.655; PCC, M = 0.056, P = 0.137;
mPFC, M =−0.020, P = 0.527; hippocampus, M =−0.012,
P = 0.669). In sum, there is strong evidence of a shared
response across infants, not just in visual regions, but also in
regions involved in narrative processing in adults. This shared
response was specific to the timing of the movie, with higher
ISC values when timecourses were aligned vs. shifted in time
(SI Appendix, Fig. S1A), and specific to the content of the movie,
with higher ISC values for comparisons of the same vs. different
movies (SI Appendix, Fig. S1B).

Flattened Hierarchical Gradient of Event Timescales in the
Infant Brain. Given that infants process the movie in a similar
way to each other, we next asked whether their neural activity
contains evidence of event segmentation, as in adults. Our analysis
tested whether infant brains transition through discrete event
states characterized by stable voxel activity patterns, which then
shift into new stable activity patterns at event boundaries. We
used a computational model to characterize the stable neural
event patterns of infant and adult brains (25). We analyzed the
data from infant and adult groups separately. Within each group,
we repeatedly split the data in half, with one set of participants
forming a training set and the other a test set. We learned the
model on the training set using a range of event numbers from 2 to
21 and then applied it to the test set. Model fit was assessed by the
log probability of the test data according to the event segmentation
that was learned (i.e., log-likelihood). In a searchlight analysis, we
assigned to each voxel the number of events that maximized the
log-likelihood of the model for activity patterns from surrounding
voxels across test iterations. In an ROI analysis, the patterns were
defined from all voxels in each ROI.

In adults, we replicated previous work showing a hierarchical
gradient of event timescales across cortex, with more/shorter
events in early visual compared to higher-order associative regions
(Fig. 2A). Qualitative inspection revealed that boundaries in EVC

seemed to correspond to multiple types of visual changes in the
movie (e.g., between camera angles, viewpoints of main charac-
ters), while precuneus boundaries included major plot points (e.g.,
arrival of pilot, flying machine breaking, return of blueprint that
fixes machine). In contrast, infants did not show strong evidence
of a hierarchical gradient. In fact, the model performed optimally
with fewer/longer events across the brain (Fig. 2B). Although the
timing of infant EVC boundaries differed from that for adults, the
infant precuneus boundary was part of the set of adult precuneus
boundaries (corresponding to the flying machine breaking). These
findings support the third hypothesis of infants being biased to
longer event timescales throughout the cortical hierarchy.

Coarser but Reliable Event Structure across Brain Regions in
Infants. The above analysis provides a qualitative description of
the timescale of event processing in the infant brain. However,
comparing the relative model fits for different timescales does not
allow us to assess whether the model fit at the optimal timescale
is significantly above chance. Furthermore, it does not give us a
sense of the reliability of these results and whether they generalize
to unseen participants. To quantify whether these learned events
truly demarcated state changes in neural activity patterns, we used
nested cross-validation. For each ROI, we followed the steps above
for finding the optimal number of events, but critically held one
participant out of the analysis completely (and iterated so each
participant was held out once). On each leave-one-participant-out
iteration, the number of optimal events in the remaining N − 1
training participants could vary; the held-out participant had no
impact on the event model that was learned. The model with the
optimal event structure in the training participants was then fit
to the held-out participant’s data. To establish a null distribution,
we rotated the held-out participant’s data in time. A z score of
the log-likelihood for the actual result versus the null distribution
was calculated to determine whether the event structure learned
by the model generalized to a new participant better than chance
(Fig. 3A). This analysis can tell us whether the smaller number of
events observed in infants reflects true differences in processing
granularity between adults and infants or results from combining
across infants who have idiosyncratic event structures.

Overall, the models for different ROIs reliably fit independent
data (Fig. 3B). All ROIs were significant in adults (EVC, M =
4.85, CI = [4.55, 5.16], P < 0.001; LOC, M = 5.53, CI =
[5.18, 5.86], P < 0.001; AG, M = 4.94, CI = [4.38, 5.43],
P < 0.001; PCC, M = 3.07, CI = [2.27, 3.77], P < 0.001;
precuneus, M = 4.46, CI = [4.02, 4.91], P < 0.001; mPFC,
M = 3.23, CI = [2.21, 4.20], P < 0.001; hippocampus, M =
0.907, CI = [0.147, 1.64], P = 0.014; EAC, M = 3.60, CI =
[3.06, 4.06], P < 0.001). This was also true for infants (EVC,
M = 3.89, CI = [3.14, 4.54], P < 0.001; LOC, M = 4.87,
CI = [4.05, 5.55], P < 0.001; AG, M = 2.83, CI = [2.13,
3.53], P < 0.001; PCC, M = 1.05, CI = [0.406, 1.68], P =
0.002; precuneus, M = 2.91, CI = [1.79, 3.93], P < 0.001;
mPFC, M = 2.08, CI = [1.13, 3.03], P < 0.001; hippocampus,
M = 0.567, CI = [0.071, 1.11], P = 0.030; EAC, M = 3.83,
CI = [2.67, 4.89], P < 0.001). This analysis confirms that the
longer event timescales we observed across the cortical hierarchy
in infants are reliable.

Infant data are often noisier than adult data (35), so we took
additional steps to verify that the longer events in infants were
not a mere byproduct of this noise. In particular, we simulated
fMRI data with different levels of noise and then fit the event
segmentation model at each level. The model tended to overes-
timate the optimal number of events (i.e., more/shorter events)
as noise increased (SI Appendix, Fig. S2A), regardless of the shape
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(B) Example timepoint-by-timepoint correlation matrices in EVC and precuneus in the two groups. The model event boundaries found for each age group are
outlined in red (EVC) and aqua (precuneus).

of the neural data assumed (SI Appendix, Fig. S2B). This suggests
that the smaller number of longer events in infants does not result
from increased noise per se.

Although infants did not fixate the movie as much as adults,
we could not find evidence that this was responsible for their
fewer/longer neural events. In a reanalysis of the few infants who
maintained fixation throughout the movie (n = 4), we obtained
the same optimal number/duration of neural events as in the

full sample in EVC (3), PCC (2), precuneus (2), mPFC (2),
hippocampus (2), and EAC (3) and very similar number/duration
of neural events in LOC (2 vs. 3) and AG (2 vs. 3). Moreover, in
a split-half analysis of infants based on the proportion of movie
frames that were fixated, infants with below-median fixation and
above-median fixation showed nearly identical log-likelihoods of
the hidden Markov model (HMM) fits across a range of different
event numbers/durations (SI Appendix, Fig. S3).
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Relationship between Adult and Infant Event Structure. The
optimal number of events for a given region differs across adults
and infants, but this does not necessarily mean that the patterns of
neural activity are unrelated. The coarser event structure in infants
may still be present in the adult brain, with their additional events
carving up these longer events more finely. Conversely, the finer
event structure in adults may still be developing in the infant
brain, such that it may be present but have a less optimal fit. We
thus investigated whether event structure from one group could
explain the neural activity of individual participants in the other
group (Fig. 4). We compared this across-group prediction to a
baseline of how well other members of the same group could
explain an individual’s neural activity. If event structure better
explains neural data from the same age group compared to the
other age group, then we can conclude that event structures differ
between age groups.

When event segmentation models fit to adults were applied
to infant neural activity, all ROIs except hippocampus showed
significant model fit over permutations (EVC, M = 3.81,
CI = [3.40, 4.26], P < 0.001; LOC, M = 4.82, CI = [4.30,
5.29], P < 0.001; AG, M = 3.12, CI = [2.45, 3.72], P <
0.001; PCC, M = 1.43, CI = [0.796, 2.03], P < 0.001;
precuneus, M = 3.68, CI = [2.93, 4.34], P < 0.001; mPFC,
M = 2.95, CI = [2.18, 3.73], P < 0.001; hippocampus,
M = 0.106, CI = [−0.659, 0.892], P = 0.794; EAC, M =
2.12, CI = [1.03, 3.18], P < 0.001). This suggests that
although infants and adults had a different optimal number of
events in these regions, there was some overlap in their event
representations. In many of these regions, models trained on
adults showed significantly better fit to adults than to infants
(EVC, M = 1.04, CI = [0.490, 1.56], P < 0.001; LOC,
M = 0.715, CI = [0.152, 1.31], P = 0.012; AG, M = 1.82,
CI = [0.952, 2.65], P < 0.001; PCC, M = 1.64, CI = [0.691,
2.68], P = 0.002; precuneus, M = 0.781, CI = [−0.024, 1.61],
P = 0.054; EAC, M = 1.48, CI = [0.385, 2.65], P = 0.008),
suggesting that adult-like event structure is still developing in
these regions. Indeed, how well adult event structure fit an infant
was related to infant age in LOC (r = 0.457, P = 0.026). No
other ROIs showed a reliable relationship with age (Ps> 0.10),
although we had a relatively small sample and truncated age range
for evaluating individual differences.

When event segmentation models learned from infants were
applied to adult neural activity, all ROIs except hippocampus
showed significant model fit over permutations (EVC, M = 2.33,
CI = [1.73, 2.89], P < 0.001; LOC, M = 3.99, CI = [3.14,
4.81], P < 0.001; AG, M = 1.90, CI = [1.08, 2.75], P <
0.001; PCC, M = 1.93, CI = [1.33, 2.63], P < 0.001; pre-
cuneus, M = 3.08, CI = [2.35, 3.84], P < 0.001; mPFC, M =
1.59, CI= [0.846, 2.31],P = 0.001; hippocampus,M = 0.215,
CI= [−0.433, 0.941], P = 0.584; EAC,M = 2.41, CI = [1.46,
3.42], P < 0.001). Infant event models explained infant data bet-
ter than adult data only in EVC (M = 1.56, CI = [0.585, 2.42],
P = 0.006). Intriguingly, infant event models showed better fit to
adult vs. infant neural activity in PCC, although the effect did not
reach statistical significance (M =−0.879, CI = [−1.84, 0.126],
P = 0.078).

Altogether, the finding that events from one age group sig-
nificantly fit data from the other age group shows that infant
and adult event representations are related in all regions except
the hippocampus. Nonetheless, the better fit in some ROIs when
applying events from one age group to neural activity from the
same vs. other age group provides evidence that these event
representations are not the same and may in fact change over
development, compatible with the second and third hypotheses
that the infant brain segments experience differently than the adult
brain.

Expression of Behavioral Event Boundaries. We took a brain-
based, data-driven approach to discovering event representations
in adults and infants, but how do these neural event representa-
tions relate to behavior? The behavioral task of asking participants
to explicitly parse or annotate a movie is not possible in infants.
However, in adults such annotations of high-level scene changes
have been shown to align with neural event boundaries in the adult
AG, precuneus, and PCC (25). Given that we found that adult
neural event boundaries in these same regions significantly fit
infant data, we tested whether adult behavioral event boundaries
might also be reflected in the infant brain.

We collected behavioral event segmentation data from 22
independent adult participants who watched “Aeronaut” while
identifying salient boundaries (24) (Fig. 5A). Participants were
not instructed to annotate at any particular timescale and were

A
ct

u
a

l l
o

g
-l

ik
e

lih
o

o
d

 v
s 

p
e

rm
u

ta
ti

o
n

s 
z-

st
a

ti
st

ic
 

-2

0

2

4

6

8

10

adult data

Adult

Events 

Infant

Events

Adult

Events 

Infant

Events

Adult

Events 

Infant

Events

Adult

Events 

Infant

Events

Adult

Events 

Infant

Events

Adult

Events 

Infant

Events

Adult

Events 

Infant

Events

Adult

Events 

Fig. 4. Reliability of event structure for models learned on participants of the same vs. other age group. Light bars indicate fit of adult and infant event
structures to adult data, and dark bars indicate fit of adult and infant event structures to infant data. Note that the fits to the same group (adult events in adults,
infant events in infants) are simply replotted from Fig. 3, without duplicating the statistics. Overall, event structures learned from adults and infants fit data
from the other group (clearest in EVC and LOC). However, in several regions, these fits were weaker than to data from the same group (clearest in EVC, LOC, AG,
PCC, and EAC for adult events and in EVC for infant events). Error bars represent 95% CIs of the mean from bootstrap resampling. ***P < 0.001, **P < 0.01,
*P < 0.05.
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A B C

Fig. 5. Relating behavioral boundaries to neural activity. (A) Matrix showing which behavioral participants indicated the presence of an event boundary at each
TR in the movie. The 10 TRs with the highest percentage of agreement robust to response time adjustment were used as event boundaries (colored columns;
see Materials and Methods). Movie frames from the TR before, during, and after each event boundary are depicted below for qualitative inspection. (B) Whole-
brain searchlight analysis for each age group comparing pattern similarity between timepoints drawn from within vs. across behavioral event boundaries.
Bootstrapped z scores are thresholded at P < 0.05, uncorrected. (C) ROI analysis of difference in pattern similarity within minus across behavioral events. Dots
represent individual participants and error bars represent 95% CIs of the mean from bootstrap resampling. One adult participant with a value beyond the y axis
range for PCC is indicated with an X at the negative edge. Infant participants with values beyond the y axis range for EVC and hipppocampus are indicated with
Xs at the positive edge. ***P < 0.001, **P < 0.01, *P < 0.05.

simply asked to indicate when it felt like a new event occurred.
We quantified the fit of behavioral boundaries to neural activ-
ity by calculating the difference in pattern similarity between
two timepoints within vs. across boundaries, equating temporal
distance. Results were weighted by the number of unique time-
point pairs that made up the smaller group of correlations (e.g.,
close to the boundary, there are fewer across-event pairs than
within-event pairs). A more conservative approach considered
timepoint pairs within vs. across event boundaries anchored to
the same timepoint (SI Appendix, Fig. S4). To the extent that
behavioral segmentation manifested in the event structure of a
region, we expected greater neural similarity for timepoints within
events.

We performed this analysis for both whole-brain searchlights
and ROIs. In adults, the searchlight revealed greater pattern sim-
ilarity within vs. across behavioral event boundaries throughout
the brain, including visual regions, medial frontal cortex, bilat-
eral hippocampus, supramarginal gyrus, and posterior cingulate
(Fig. 5B). This generally fits with previous work showing that neu-
ral events in visual and semantic regions can relate to behavioral
boundaries (25). For the ROIs (Fig. 5C ), we found significantly
greater pattern similarity within vs. across behavioral boundaries
in precuneus (M = 0.024, CI = [0.003, 0.045], P = 0.024),
hippocampus (M = 0.011, CI = [0.004, 0.018], P < 0.001),
and EAC (M = 0.013, CI = [0.004, 0.022], P = 0.002), as well
as significantly less pattern similarity within vs. across behavioral
boundaries in LOC (M =−0.011, CI = [−0.022, −0.001],
P = 0.028); the other regions were insensitive to the behavioral
boundaries (EVC, M =−0.002, CI = [−0.013, 0.008], P =
0.622; AG, M =−0.003, CI = [−0.025, 0.018], P = 0.742;
PCC, M =−0.005, CI = [−0.025, 0.013], P = 0.602; mPFC,
M = 0.007, CI= [−0.002, 0.015],P = 0.108). Given that most
of the nonsignificant ROIs in this analysis showed reliable event
segmentation overall (Fig. 3B), the behavioral event boundaries
may have been misaligned, for example by anticipation (52), or

focused at a particular timescale that could have been modified
through instructions.

In infants, several regions showed greater pattern similarity
within vs. across behavioral boundaries in the searchlight analy-
sis, including visual regions, supramarginal gyrus, posterior and
anterior cingulate, and right lateral frontal cortex. In the ROIs,
there was significantly greater pattern similarity within vs. across
behavioral boundaries in EAC (M = 0.030, CI = [0.001, 0.062],
P = 0.044); the other regions were insensitive to the behav-
ioral boundaries (EVC, M = 0.027, CI = [−0.007, 0.068, P =
0.104; LOC, M =−0.001, CI = [−0.033, 0.031], P = 0.894;
AG, M = 0.019, CI = [−0.014, 0.060], P = 0.306; PCC, M =
0.021, CI = [−0.003, 0.049], P = 0.088; precuneus, M =
0.003, CI = [−0.019, 0.029], P = 0.878; mPFC, M = 0.000,
CI = [−0.032, 0.037], P = 0.994; hippocampus, M = 0.025,
CI = [−0.006, 0.062], P = 0.144). Expression of behavioral
boundaries in neural event structure in EAC was also related to
infants’ age (r = 0.326, P = 0.036). This is especially striking
because adult behavioral segmentation also manifested in adult
EAC. Thus, infants can have neural representations related to how
adults explicitly segment a movie, long before they can perform
the behavior, understand task instructions, or even speak. This
is true when we consider all timepoints within behavioral events
(Fig. 5) and when we take into account temporal distance from be-
havioral event boundaries (SI Appendix, Figs. S5 and S6). How-
ever, this occurred in a small number of regions that did not fully
overlap with those of adults, and no region showed reliable align-
ment between the probability of adult behavioral boundaries and
infant neural boundaries from the HMM (SI Appendix, Fig. S7).
Together, these results suggest functional changes over devel-
opment in the behavioral relevance of neural signals for event
segmentation.

Event Structure in an Additional Infant Cohort. To provide
additional evidence of coarser event structure in infancy, we
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applied our analyses to a more heterogeneous sample of in-
fants who watched a different, short cartoon movie (“Mickey”)
during breaks between tasks for other studies. We first asked
whether there were consistent neural responses within a group
of 15 adults and found a similar topography of ISC as in the
main cohort, with significant values in EVC, LOC, AG, PCC,
precuneus, and EAC (SI Appendix, Fig. S8). ISC was weaker in
15 infants, although still significant in EVC and LOC. Weaker
ISC may potentially be related to the broader age range of the
infants (4 to 33 mo)—almost 2 additional years—given the
dramatic developmental changes that occur in this age range and
the reliance of ISC on common signal across participants. The
smaller sample size, smaller stimulus display (one-quarter size),
and different movie may also have been factors that influenced
ISC. We next fit the event segmentation model and found a
hierarchical gradient of event timescales across adult cortex, with
more events in sensory regions and fewer events in associative
regions (SI Appendix, Fig. S9). However, this gradient was less
pronounced than in the “Aeronaut” dataset, with fewer events in
visual regions. In all but mPFC and hippocampus, event structure
significantly explained held-out adult data. We therefore found
a similar pattern of results in adults across both datasets. In
infants, there was no evidence of a hierarchical gradient in the
number/length of events (SI Appendix, Fig. S9). The model again
favored fewer/longer events across regions, and these events reli-
ably fit neural activity from a held-out participant in EVC, LOC,
precuneus, mPFC, and hippocampus (SI Appendix, Fig. S9). This
additional sample provides further evidence for the third hypothe-
sis that there is reliable but coarser event structure across the infant
brain.

Discussion

In this study, we investigated neural event segmentation us-
ing a data-driven, computational approach in adults and in-
fants watching a short movie. We found synchronous processing
of the movie and reliable event structure in both groups. In
adults, we replicated a previously observed hierarchical gradient of
timescales in event processing across brain regions. This gradient
was flattened in infants, who instead had coarse neural event
structure across regions, both in our main dataset and in a second
dataset of infants watching a different movie. Although event
structure from one age group provided a reliable fit to the other
age group, suggesting some similarity in their representations,
adult event structure best fit adult data, suggesting developmental
differences. Furthermore, behavioral boundaries were expressed
in neural event structure in overlapping but distinct regions
across the two age groups. Altogether, this study provides in-
sights into how infants represent continuous experience, namely
that they automatically segment experience into discrete events,
as in adults, but at a coarser granularity lacking a hierarchical
gradient.

Different mechanisms could be responsible for longer event
timescales in infant visual regions. One account involves which in-
puts are processed by the infant brain. Developmental differences
in sensation (e.g., acuity), perception (e.g., object recognition),
and/or attention (e.g., selection, vigilance) could limit the number
of visual features or transients that are registered, decreasing
the number of events that could be represented. For example,
although it seems intuitive that the limited attention of infants
might lead to shorter neural event timescales, this shorter atten-
tion span may hamper integration of information from before to
after a boundary, causing infants to miss some events that adults
would notice. This is consistent with work in adults showing

that shifts of attention can decrease the temporal resolution of
perception (53) and that working-memory limitations can be
associated with coarser event segmentation in some cases (54). By
this account, the architecture for hierarchical event processing may
be ready in infancy but not fully engaged given input or processing
constraints.

An alternative account is that the infant brain receives rich
input but that the architecture itself takes time to develop. This
is consistent with findings that infants integrate sensory inputs
more flexibly in time. Namely, young children bind multisen-
sory and visual features over longer temporal receptive windows
than older children and adults (47–50). Interestingly, this di-
minished temporal precision may be advantageous to infants
when gathering information about objects, labels, and events in
their environment (55). For instance, infants may better extract
meaning from social interactions if they can bind together con-
tinuously unfolding visual, auditory, and emotional information;
accordingly, toddlers with autism spectrum disorder have shorter
than normal temporal receptive windows (48). This behavioral
literature has been agnostic to how or why temporal receptive
windows are dilated in infancy, but the lack of neural gradient
may be related. Future work combining behavioral and neural ap-
proaches to temporal processing and attention could inform this
relationship.

A less theoretically interesting explanation for the smaller num-
ber of events in infant visual regions could be model bias. For
example, the model may default to fewer events in heterogeneous
participant groups. Although the “Aeronaut” dataset had a rel-
atively narrow band of absolute age (9 mo), there are dramatic
cognitive and neural changes during the first year of life (56).
We found only limited evidence for developmental trajectories in
infant event representation (e.g., in how well adult event structure
fit infant LOC). That said, to test whether heterogeneity and noise
reduce the estimated number of events, we performed a series of
simulations. Contrary to what would be predicted, the optimal
number of events increased when we added more noise. This is
inconsistent with attributing the fewer/longer events in infant
visual regions to greater functional and anatomical variability.
Nonetheless, research with larger samples targeted at more specific
age bands across a broader range of development could inform
whether there are meaningful changes in event structure during
infancy.

In contrast to visual regions, higher-order regions of adult and
infant brains represented events over a similar timescale. This
maturity might be understood in light of the sensitivity of infants
to goal-directed actions and events (5). Young infants both predict
the outcomes of actions (57) and are surprised by inefficient paths
toward a goal (58) when a causal agent is involved. Unambiguous
agency also increases the ability of older infants to learn statistical
structure (59), suggesting that the infant mind may prioritize
agency. Indeed, infants are better at imitating a sequence of actions
that have hierarchical versus arbitrary structure (3, 60) and show
better memory for events that have a clear agent (61), perhaps
because of a propensity to segment events according to goals
during encoding. Our findings of seemingly mature temporal
processing windows in higher-order but not visual regions in in-
fancy suggest that coarser event representations may precede fine-
grained representations. Longitudinal tracking of infants’ neural
event representations could inform this possibility.

We chose the “Aeronaut” movie for this study because it is
dynamic, has appropriate content for infants, and completes a
narrative arc within a short timeframe. Nevertheless, the event
boundaries detected in the brain and behavior surely depend in
part on the particularities of this movie, including both low-level
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changes such as color and motion and high-level changes to
characters and locations. Furthermore, neural synchrony across
participants is driven not only by shared perceptual or cognitive
factors, but also by eye movements (42) and physiological signals
(62), which may themselves get synchronized when viewing the
same content. This study is a first step, parallel to initial adult
studies (25), in demonstrating the existence and characteristics
of neural event segmentation in infants. Relying on an off-the-
shelf movie makes it more difficult to determine which factors
drive segmentation. Adult EVC vs. precuneus boundaries seemed
to occur at timepoints that made sense for each region’s respective
function (visual changes vs. major plot points), but we recognize
that this is a post hoc, qualitative observation. Nonetheless, our
study lays the groundwork for future studies to manipulate video
content and test various factors. For instance, in adults it was
subsequently determined that neural event patterns in mPFC
reflect event schemas (26) and neural event patterns in precuneus
and mPFC track surprisal with respect to beliefs (63). Future
infant studies could experimentally manipulate the content and
timescales of dynamic visual stimuli to better understand the
nature of longer neural event structure in infants.

The nature of conducting fMRI research in awake infants
means our study has several limitations. First, there were more
missing data in the infant group than in the adult group from
eye closure and movement. We partially addressed this issue
by introducing a new variance parameter to the computational
model, but acknowledge that it remains an unavoidable difference
in the data. Second, our analyses were conducted in a common
adult standard space, requiring alignment across participants.
Because of uncertainty in the localization and extent of these
regions in infants, we defined our ROIs liberally. This may explain
the curious finding of reliable event structure and relation to
behavioral boundaries in EAC for both adults and infants. Indeed,
the EAC ROI encompassed secondary auditory regions and su-
perior temporal cortex, which is important for social cognition,
motion, and face processing (64, 65) and shows a modality-
invariant response to narratives (66). Alternatively, events in EAC
may have been driven by auditory imagery while watching the
movie (e.g., the sound of the flying machine crashing or the click
of the girl’s camera). Future work could define ROIs based on a
child atlas (67), although that would complicate comparison to
adults. Alternatively, ROIs could be defined in each individual
using a functional localizer task, although collecting both movie
and localizer data from a single awake infant session is difficult.
Regardless, in other studies we have successfully used adult-
defined ROIs (35, 36). Finally, the age range of infants was wide
from a developmental perspective. This was a practical reality
given the difficulty of recruiting and testing awake infants in
fMRI. Nevertheless, it is potentially problematic in that our model
can only capture event structure shared across participants. Future
work could focus on larger samples from narrower age bands to
ascertain how changes in neural event representations relate to
other developmental processes (e.g., language acquisition, motor
development).

In conclusion, we found that infants’ brains automatically
segment continuous experience into discrete neural events, but do
so in a coarser way than the corresponding brain regions in adults
and without a resulting hierarchical gradient in the timescale
of event processing across these regions. This neuroscientific ap-
proach for accessing infant mental representations complements a
rich body of prior behavioral work on event cognition, providing
a different lens on how infants bring order to the “blooming,
buzzing confusion” (68) of their first year.

Materials and Methods

Participants. Data were collected from 24 infants aged 3.60 to 12.70 mo
(M = 7.43, SD = 2.70; 12 female) while they watched a silent cartoon
(“Aeronaut”). This number does not include data from infants who moved their
head excessively (n = 11), who did not look at the screen (n = 4) during more
than half of the movie, who did not watch the full movie because of fussiness
(n = 9), or because of technical error (n = 1). Our final sample size of 24 infants
was chosen prior to the start of data collection to align with recent infant fMRI
studies from our laboratory (36, 37) and others (69). For comparison, we also
collected data from 24 adult participants aged 18 to 32 y (M = 22.54, SD =
3.66; 14 female) who watched the same movie. An extraneous adult participant
was collected but subsequently excluded to equate infant and adult participant
group sizes. Although some infant and adult participants watched “Aeronaut” one
or more additional times in later fMRI sessions, we analyzed only the first session
in which we collected usable data in the current paper. The study was approved by
the Human Subjects Committee (HSC) at Yale University. All adults provided in-
formed consent, and parents provided informed consent on behalf of their child.

Materials. “Aeronaut” is a 3-min-long segment of a short film entitled “Soar”
created by Alyce Tzue (https://vimeo.com/148198462). The film was downloaded
from YouTube in Fall 2017 and iMovie was used to trim the length. The audio
was not played to participants in the scanner. The movie spanned 45.5 visual
degrees in width and 22.5 visual degrees in height. In the video, a girl is looking
at airplane blueprints when a miniature boy crashes his flying machine onto her
workbench. The pilot appears frightened at first, but the girl helps him fix the
machine. After a few failed attempts, a blueprint flies into the girl’s shoes, which
they use to finally launch the flying machine into the air to join a flotilla of other
ships drifting away. In the night sky, the pilot opens his suitcase, revealing a
diamond star, and tosses it into the sky. The pilot then looks down at Earth and
signals to the girl, who looks up as the night sky fills with stars.

The code used to show the movies on the experimental display is available
at https://github.com/ntblab/experiment menu/tree/Movies/. The code used to
perform the data analyses is available at https://github.com/ntblab/infant neuro
pipe/tree/EventSeg/; this code builds on tools from the Brain Imaging Analysis
Kit (70) (https://brainiak.org/docs/). Raw and preprocessed data are available at
https://doi.org/10.5061/dryad.vhhmgqnx1.

Data Acquisition. Procedures and parameters for collecting MRI data from
awake infants were developed and validated in a previous methods paper (35),
with key details repeated below. Data were collected at the Brain Imaging Center
in the Faculty of Arts and Sciences at Yale University. We used a Siemens Prisma
(3T) MRI and the bottom half of the 20-channel head coil. Functional images
were acquired with a whole-brain T2* gradient-echo echo-planar imaging (EPI)
sequence (repetition time [TR] = 2 s, echo time [TE] = 30 ms, flip angle =
71, matrix = 64 × 64, slices = 34, resolution = 3 mm isotropic, interleaved
slice acquisition). Anatomical images were acquired with a T1 pointwise encod-
ing time reduction with radial acquisition (PETRA) sequence for infants (TR1 =
3.32 ms, TR2 = 2,250 ms, TE = 0.07 ms, flip angle = 6, matrix = 320 × 320,
slices = 320, resolution = 0.94 mm isotropic, radial slices = 30,000) and a
T1 magnetization-prepared rapid gradient-echo (MPRAGE) sequence for adults
(TR = 2,300 ms, TE = 2.96 ms, inversion time [TI] = 900 ms, flip angle =
9, integrated parallel acquisition technique [iPAT] = 2, slices = 176, matrix =
256 × 256, resolution = 1.0 mm isotropic). The adult MPRAGE sequence
included the top half of the 20-channel head coil.

Procedure. Before their first session, infant participants and their parents met
with the researchers for a mock scanning session to familiarize them with the
scanning environment. Scans were scheduled for a time when the infant was
thought to be most comfortable and calm. Infants and their accompanying
parents were extensively screened for metal. Three layers of hearing protection
(silicone inner ear putty, over-ear adhesive covers, and ear muffs) were applied
to the infant participant. They were then placed on the scanner bed on top of
a vacuum pillow that comfortably reduced movement. Stimuli were projected
directly on to the surface of the bore. A video camera (MRC high-resolution
camera) was placed above the participant to record the participant’s face during
scanning. Adult participants underwent the same procedure with the following
exceptions: They did not attend a mock scanning session, hearing protection was
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only two layers (earplugs and optoacoustics noise-canceling headphones), and
they were not given a vacuum pillow. Finally, infants may have participated in
additional tasks during their scanning session, whereas adult sessions contained
only the movie task (and an anatomical image).

Gaze Coding. Gaze was coded offline by two to three coders for infants (M =
2.2, SD= 0.6) and by one coder for adults. Based on recordings from the in-bore
camera, coders determined whether the participant’s eyes were on screen, off
screen (i.e., closed, blinking, or looking off of the screen), or undetected (i.e., out
of the camera’s field of view). In one infant, gaze data were not collected because
of technical issues; in this case, the infant was monitored by visual inspection of
a researcher and determined to be attentive enough to warrant inclusion. For all
other infants, coders were highly reliable: They reported the same response code
on an average of 93.2% (SD= 5.2%; range across participants= 77.7 to 99.6%)
of frames. The modal response across coders from a moving window of five frames
was used to determine the final response for the frame centered in that window.
In the case of ties, the response from the previous frame was used. Frames were
pooled within TRs, and the average proportion of TRs included was high for both
adults (M = 98.8%, SD = 3.2%; range across participants = 84.4 to 100%) and
infants (M = 88.4%, SD = 12.2%; range across participants = 55.6 to 100%).

Preprocessing. Data from both age groups were preprocessed using a custom
pipeline designed for awake infant fMRI (35), based on the FMRIB Software
Library (FSL) FMRI Expert Analysis Tool (FEAT). If infants participated in other
tasks during the same functional run (n = 12), the movie data were cleaved to
create a pseudorun. Three burn-in volumes were discarded from the beginning
of each run/pseudorun. Motion correction was applied using the centroid volume
as the reference—determined by calculating the Euclidean distance between all
volumes and choosing the volume that minimized the distance to all other
volumes. Slices in each volume were realigned using slice-timing correction.
Timepoints with greater than 3 mm of translational motion were excluded and
temporally interpolated so as not to bias linear detrending. The vast majority
of infant timepoints were included after motion exclusion (M = 92.6%, SD =
9.9%; range across participants = 65.6 to 100%) and all adult timepoints were
included. Timepoints with excessive motion and timepoints during which eyes
were closed for a majority of movie frames in the volume (out of 48, given
the 2-s TR and movie frame rate of 24 frames per second) were excluded from
subsequent analyses. Combining across exclusion types, this meant that in total,
a total of 2,135 TRs (98.8% of possible) or 71.2 min of data were retained in adults
(M = 2.97 min per participant, range = 2.57 to 3.00) and 1,830 TRs (84.7%
of possible) or 61.0 min of data were retained in infants (M = 2.54 min per
participant, range = 1.37 to 3.00). The signal-to-fluctuating-noise ratio (SFNR)
was calculated (71) and thresholded to form the mask of brain vs. nonbrain
voxels. Data were spatially smoothed with a Gaussian kernel (5 mm full width
at half maximum [FWHM]) and linearly detrended in time. Analysis of Functional
NeuroImages (AFNI)’s (https://afni.nimh.nih.gov) despiking algorithm was used
to attenuate aberrant timepoints within voxels. After removing excess burn-out
TRs, functional data were z scored within run.

The centroid functional volume was registered to the anatomical image. Initial
alignment was performed using FMRIB’s Linear Image Registration Tool (FLIRT)
with 6 degrees of freedom (DOF) and a normalized mutual information cost
function. This automatic registration was manually inspected and then corrected
if necessary using mrAlign from mrTools (Gardener Laboratory). To compare
across participants, functional data were further transformed into standard space.
For infants, anatomical images were first aligned automatically (FLIRT) and then
manually (Freeview) to an age-specific Montreal Neurological Institute (MNI)
infant template (72). This infant template was then aligned to the adult MNI stan-
dard (MNI152). Adult anatomical images were directly aligned to the adult MNI
standard. For all analyses, we considered only voxels included in the intersection
of all infant and adult brain masks.

In an additional exploratory analysis, we realigned participants’ anatomical
data to the adult standard using Advanced Normalization Tools (ANTs) (73),
a nonlinear alignment algorithm. For infants, an initial linear alignment with
12 DOF was used to align anatomical data to the age-specific infant template,
followed by nonlinear warping using diffeomorphic symmetric normalization.
Then, as before, we used a predefined transformation (12 DOF) to linearly align
between the infant template and the adult standard. For adults, we used the

same alignment procedure, except participants were directly aligned to the adult
standard. Results using this nonlinear procedure were nearly identical to the
original analyses (SI Appendix, Fig. S10).

Regions of Interest. We performed analyses over the whole brain and
in ROIs. We defined the ROIs using the Harvard-Oxford probabilistic atlas
(74) (0% probability threshold) in EVC, LOC, AG, precuneus, EAC, and the
hippocampus. We used functionally defined parcellations obtained in resting
state (75) to define two additional ROIs: mPFC and PCC. We included these
regions because of their involvement in longer timescale narratives, events, and
integration (76).

Intersubject Correlation. We assessed whether participants were processing
the movie in a similar way using ISC (39, 40). For each voxel, we correlated
the timecourse of activity between that of a single held-out participant and the
average timecourse of all other participants in a given age group. We iterated
through each participant and then created the average ISC map by first Fisher
transforming the Pearson correlations, averaging these transformed values, and
then performing an inverse Fisher transformation on the average. We visualized
the whole-brain map of the intersubject correlations for adults and infants sepa-
rately, thresholded at a correlation of 0.10.

For the ROI analysis, the voxel ISCs within a region were averaged separately
for each held-out participant using the Fisher-transform method described above.
Statistical significance was determined by bootstrap resampling. We randomly
sampled participants with replacement 1,000 times, on each iteration forming
a new sample of the same size as the original group, and then averaged their
ISC values to form a sampling distribution. The P value was calculated as the
proportion of resampling iterations on which the group average had the opposite
sign to the original effect and doubled to make it two tailed. For comparing ISC
across infant and adult groups, we permuted the age group labels 1,000 times,
each time recalculating ISC values for these shuffled groups and then finding
the difference of group means. This created a null distribution for the difference
between age groups.

Event Segmentation Model. To determine the characteristic patterns of event
states and their structure, we applied an HMM variant (25) available in BrainIAK
(70) to the average fMRI activity of participants from the same age group. This
model uses an algorithm that alternates between estimating two related compo-
nents of stable neural events: 1) multivariate event patterns and 2) their event
structure (i.e., placement of boundaries between events). The constraints of the
model are that each event state is visited only once and that staying versus
transitioning into a new event state has the same prior probability. Model fitting
stopped when the log probability that the data were generated from the learned
event structure (i.e., log-likelihood) (77) began to decrease.

To deal with missing data in the input (a reality of infant fMRI data), we
modified the BrainIAK implementation of the HMM. First, in calculating the
probability that each observed timepoint was generated from each possible event
model, timepoint variance was scaled by the proportion of participants with data
at that timepoint. In other words, if some infants had missing data at a timepoint
because of head motion or gaze, the variance at that timepoint was adjusted by
the square root of the maximum number of participants divided by the square
root of the number of participants with data at that point. This meant that even
though the model was fit on averaged data that obscured missing timepoints, it
had an estimate of the “trustworthiness” of each timepoint. Second, for the case
in which missing timepoints persisted after averaging across participants, the log
probability for the missing timepoint was linearly interpolated based on nearby
values.

The HMM requires a hyperparameter indicating the number of event states.
By testing a range of event numbers and assessing model fit, we determined
the optimal number of events for a given voxel or region. We used a cubical
searchlight (7 × 7 × 7 voxels) to look at the timescales of event segmentation
across the whole brain. In a given searchlight, the HMM was fit to the average
timecourse of activity for a random split half of participants using a range of
event counts between 2 and 21. We capped the maximum number of possible
events at 21 to ensure that at least some events would be 3 TRs long. The
learned-event patterns and structure for each event count were then applied to
the average timecourse of activity for held-out data, and model fit was assessed
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using the log-likelihood. We iterated through this procedure, each time splitting
the data in half differently. The center voxel of the searchlight was assigned the
number of events that maximized the average log-likelihood across 24 iterations
(chosen to be the same number of iterations as in a leave-one-participant-out
analysis). This analysis was performed in each searchlight, separately for adults
and infants, to obtain a topography of event timescales. We also used this method
to determine the optimal number of events for each of our ROIs. In these analyses,
the timecourse of activity for every voxel in the ROI was used to learn the event
structure.

To test whether a given ROI had statistically significant event structure, we
used a nested cross-validation approach. Here, we can assess whether event
structure is generalizable to an entirely unseen participant’s data and is reliable
across unseen participants. The inner loop of this analysis was identical to what is
described above, except that a single participant was completely held out from
the analysis. After finding the optimal number of events for all but that held-
out participant, the event patterns and structure were fit to that participant’s
data. The log-likelihood for those data was compared to a permuted rotation
distribution, where the participant’s data were time shifted for every possible
shift value between one and the length of the movie (wrapping around to the
beginning). We calculated a z statistic as the difference between the actual log-
likelihood and the average log-likelihood of the permuted distribution, divided
by the SD of the permuted distribution. We then iterated through all participants
and used bootstrap resampling of the z statistics to determine significance. We
randomly sampled participants with replacement 1,000 times, on each iteration
forming a new sample of the same size as the original group, and then averaged
their z statistics to form a sampling distribution. The P value was calculated as the
proportion of resampling iterations with values less than zero, doubled to make
it two tailed.

Behavioral Segmentation. Behavioral segmentation was collected from 22
naive undergraduate students attending Yale University aged 18 to 22 y (M =
18.9, SD = 1.0; 14 females). All participants provided informed consent and
received course credit. Participants were instructed to watch the “Aeronaut” movie
and press a key on the keyboard when a new, meaningful event occurred.
Participants watched a version of the movie with its accompanying audio—a
musical track without language. Although the visual input remained the same
as in the fMRI data collection, these auditory cues may have influenced event
segmentation (78). During data collection, participants also evaluated nine other
movies, not described here, and verbally recalled each movie after segmenting.
We elected to have participants use their own judgement for what constituted
an event change. Participants had a 1-min practice movie to orient them to the
task, and the “Aeronaut” movie appeared in a random order among the list of
other movies. To capture “true” event boundaries and avoid contamination by
accidental or delayed key presses, we followed a previously published procedure
(24). That is, we set a threshold for the number of participants who indicated the
same event boundary, such that the number of event boundaries agreed upon
by at least that many participants was equal or close to the average number of
key presses across participants. Participant responses were binned into 2 TR (4-s)
windows. We found 10 event boundaries (11 events) that were each agreed upon
by at least 36% of participants and were robust to whether or not key presses were
shifted 0.9 s to account for response time (for comparison, ∼31% was used in

ref. 24). These event boundaries were then shifted 4 s in time to account for the
hemodynamic lag.

To evaluate whether and how these behavioral boundaries relate to neural
data, we tested whether voxel activity patterns for timepoints within a boundary
were more correlated than timepoints spanning a boundary. This within vs. across
boundary comparison has been used previously as a metric of event structure
(25). For our analysis, we considered all possible pairs of timepoints within and
across boundaries. For each temporal distance from the boundary, we subtracted
the average correlation value for pairs of timepoints that were across events from
the average correlation value for pairs of timepoints within the same event. At
different temporal distances, there are either more or less within-event pairs
compared to across-event pairs. To equate the number of within- and across-event
pairs, we subsampled values and recomputed the within vs. across difference
score 1,000 times. To combine across distances that had different numbers of
possible pairs, we weighted the average difference score for each distance by the
number of unique timepoint pairs that made up the smaller group of timepoint
pairs (i.e., across-event pairs when temporal distance was low, within-event pairs
when temporal distance was high). This was repeated for all participants, resulting
in a single weighted within vs. across difference score for each participant. For
the ROIs, we used bootstrap resampling of these participant difference scores to
determine statistical significance. The P value was the proportion of difference
values that were less than zero after 1,000 resamples, doubled to make it two
tailed. For the whole-brain searchlight results, we also used 1,000 bootstrap
resamples to determine statistical significance for within vs. across difference
scores for each voxel. We then calculated a z score for each voxel as the distance
between the bootstrap distribution and zero and thresholded the bootstrapped
z-score map at P < 0.05, uncorrected.

Data, Materials, and Software Availability. Anonymized data are avail-
able on Dryad (https://doi.org/10.5061/dryad.vhhmgqnx1) (79). The code for
performing the specific analyses described in this paper can be found on
GitHub (https://github.com/ntblab/infant neuropipe/ tree/EventSeg/) (80). The
code used to show the movies on the experimental display is also available on
GitHub at (https://github.com/ntblab/experiment menu/tree/Movies/) (81).
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