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How we perceive the physical world is not only organized in terms of objects, but also structured in time as
sequences of events. This is especially evident in intuitive physics, with temporally bounded dynamics such
as falling, occlusion, and bouncing demarcating the continuous flow of sensory inputs. While the spatial
structure and attentional consequences of physical objects have been well-studied, much less is known
about the temporal structure and attentional consequences of physical events in visual perception.
Previous work has recognized physical events as units in the mind, and used presegmented object interac-
tions to explore physical representations. However, these studies did not address whether and how perception
imposes the kind of temporal structure that carves these physical events to begin with, and the attentional
consequences of such segmentation during intuitive physics. Here, we use performance-based tasks to
address this gap. In Experiment 1, we find that perception not only spontaneously separates visual input
in time into physical events, but also, this segmentation occurs in a nonlinear manner within a few hundred
milliseconds at the moment of the event boundary. In Experiment 2, we find that event representations, once
formed, use coarse “look ahead” simulations to selectively prioritize those objects that are predictively part
of the unfolding dynamics. This rich temporal and predictive structure of physical event representations,
formed during vision, should inform models of intuitive physics.

Public Significance Statement
Despite the continuous flow of sensory inputs, our perceptual experiences are deeply structured in space in
terms of objects and in time in terms of events. In many ways, most research in visual perception has
focused on half of this structure: objects. To help reveal the structure of the other half, we turn to intuitive
physics—our ability to see and predict how scenes react to forces—where events are especially evident. In
intuitive physics, we do not just see objects with certain physical properties occupying certain places, but
we experience dynamic patterns of interactions, for example, falling, colliding, bouncing, and entering and
exiting containers. In two experiments with human observers, we synthesize methods and theories across
the studies of attention, music cognition, seeing, and thinking, and find that the visual system spontane-
ously marks physical events at subsecond timescales and prioritizes objects relevant to the ongoing event.
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Against the undelimited influx of sensory inputs arriving at the
eyes, our perceptual experiences are richly structured, with objects
and events delimiting discrete spatial and temporal entities. Such
structure is especially evident in the visual perception of intuitive
physics—our ability to see, at a glance, and predict how objects
move and react to forces. Yet, in many ways, most previous research
on intuitive physics has focused on only half of this structure: repre-
sentations of physical objects. Among others, these studies have
illustrated the perception of physical stability of object configura-
tions (Battaglia et al., 2013; Pramod et al., 2022), whether an object
is heavier or harder than others (Guo et al., 2020; Hamrick et al.,
2016; Schwettmann et al., 2019), and how intuitive physics may
be recruited for object perception (Wong et al., 2023). Yet, physical
scenes inherently unfold over time, expressing discrete temporal
structure in demarcated episodes of object interactions, including
collision, bouncing, toppling, falling, and entering and exiting con-
tainers. Despite their centrality to our perceptual experience and their
importance in the broader cognitive science literature (Gibson, 1954,
1975; Michotte, 1963; Spelke, 1990), the structure of physical event
representations, as they occur in the visual perception of intuitive
physics, remains largely unaddressed.
Consider the simple dynamics of a blue marble rolling on a

crowded surface, depicted in Figure 1 as two snapshots over time.
When observing the marble, various scene elements ebb and flow
into and out of our awareness: We attend to the planks under and
across the marble in the earlier moment, and the narrow passage
and the green container that the marble will enter in the later
moment. It is only natural to describe in language a scene of this
sort in terms of a sequence of interactions and the objects involved
in those interactions (as we just did), but here we ask: Does the visual
system spontaneously mark such physical event boundaries, even
during passive viewing of dynamical scenes? And if so, what are
the temporal characteristics of such real-time perceptual segmenta-
tion of unfolding dynamics? Moreover, once a segmentation occurs,
that is, between a pair of physical events, what principle(s) guide
which objects will be prioritized as part of the current event repre-
sentation? Answers to these questions will reveal the basic structure
of physical events in vision, and the goal of this article is to address
them by introducing new performance-based psychophysical tasks.

Physical Events as Units in the Mind

The study of physical events has a long history in cognitive sci-
ence. Early work examined the perception of (real or apparent;
rigid or nonrigid) object motion (Gibson, 1954), as well as how cau-
sality is perceived in so-called “launching” events (Michotte, 1963).
These examples and others made clear that there is a distinction that
can be made between physical events as they occur in the world and
physical events as they occur in the mind—in other words, changes
that are psychologically meaningful (e.g., the breaking of glass) may
not necessarily be meaningful in classical physics (since matter is
conserved; Gibson, 1975). People seem to have an intuitive under-
standing of how physical events unfold, even if their judgements
do not always adhere to Newtonian physics (McCloskey, 1983).
Landmark developmental research demonstrated that expectations
about physical events are present early in infancy, suggesting that
they may be part of a core system of knowledge (Spelke, 1990;
Spelke & Kinzler, 2007).

Much like objects, physical events are only partially determined
by the sensory data; rather, they emerge as units in the mind via per-
ceptual processing, and provide a natural interface for attentional
selection (Papafragou & Ji, 2023; Yousif & Scholl, 2019). Yet, pre-
vious work in intuitive physics either does not address physical
events, or considers physical events as a given, as presegmented
interactions in isolation: One object moves, one object falls, or
one object is occluded. This is in contrast to how we normally
encounter dynamic scenes, where an object in motion may partici-
pate in several different types of events, recruiting, at each event, a
different causal context—varying subsets of all visible objects and
surfaces relevant to ongoing dynamics. Even though using isolated
physical events has led to key insights about physical representations
(e.g., Gerstenberg et al., 2017; Karakose-Akbiyik et al., 2023; Little
& Firestone, 2021), a full understanding of intuitive physics requires
investigating how its temporal structure, that is, sequences of phys-
ical events, arises during the processing of continuous visual input,
and how physical events impact attentional prioritization of the vis-
ible objects in a scene, particularly at the time scales relevant to fast
perceptual processing. Therefore, to make progress in intuitive phys-
ics, it is essential to study the formation and contents of physical
event representations during continuous visual processing.

Uncovering Physical Event Structure in Perception: The
Current Study

In the broader event cognition literature, twomain paradigms have
been used to measure event segmentation: the unitization task
(Newtson & Engquist, 1976; Radvansky & Zacks, 2017; Zacks,
2020; Zacks et al., 2007) and the dwell-time paradigm (Hard
et al., 2011; Zheng et al., 2020). Both paradigms seek to uncover
when human participants experience event boundaries during con-
tinuous, ongoing perception. In the unitization task, participants
are simply asked to “press a button” or otherwise demarcate when
they believe an event boundary occurs. Thus, as an explicit judgment
task, the unitization task is not well-suited for revealing the sponta-
neous, automatic construction of event representations within visual
perception. The dwell-time paradigm, on the other hand, is relatively
more implicit: participants are simply asked to advance videos/sto-
ries at their own pace, and the more time that they “dwell” between
frames or pages is seen as evidence of a boundary between events.

Figure 1
A Dynamical Scene With a Blue Marble Rolling on a Surface and
Interacting With Other Objects, Shown in Two Snapshots

Note. The dashed red (dark grey) arrow shows the marble’s previous tra-
jectory, and white bounding boxes represent the objects relevant to the
unfolding dynamics within each snapshot. Screenshot adapted from:
https://www.youtube.com/watch?v=Hmb0Q0Q_7jo. See the online article
for the color version of this figure.
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However, this task may be insufficiently granular for fast timescale
events like physical events, and may also interfere with relevant
aspects of the stimuli (e.g., the velocity of objects). A different but
related method comes from the domain of audition and music cog-
nition. Repp (1992, 1998) showed that when participants listened
to a musical piece where certain notes were extended in time relative
to the original musical score, participants were less likely to detect
these changes at the transitions (i.e., boundaries) between phrases.
As we show in this article, this method suggests a paradigm for
visual perception that is more objective via its performance-based
manner, allowing us to determine if boundaries between physical
events are spontaneously formed and segmented during seeing
(see also Ji & Papafragou, 2022).
In perception, segmenting time is not the goal in itself, but a means

to a more tractable setting for selective processing of otherwise com-
plex, dynamic visual environments. For example, event representa-
tions guide which aspects of an object are prioritized: Subtle
changes made to the relevant dimension of an object (height vs.
width) with respect to the given event category (occlusion vs. contain-
ment) are differentially more detectable (Strickland & Scholl, 2015).
Additionally, seeing an actor’s reaction to invisible surfaces or objects
implies their physical presence, influencing participants’ responses to
congruent or incongruent probes (Little & Firestone, 2021). How do
events guide such selective processing in perception? One principle
advanced and strongly supported in the event cognition literature is
the idea of prediction (Reynolds et al., 2007; Zacks et al., 2007,
2011): Event models should compose of elements that will facilitate
prediction during the epoch of that event, with boundaries between
events signaled by a decreased ability to predict what will happen
next, known as prediction errors. Applied to physical events, this prin-
ciple suggests a selective processing mechanism that should take into
account the simulated trajectories of objects (i.e., it should “look
ahead” in time) to prioritize those objects that will impact dynamics
within the locality of the current event.
In the current project, we investigate the basic structure of physical

event representations within continuous perception by addressing (a)
the time course of how a new event is formed—that is, when bound-
aries are imposed on continuous input—and (b) what determines the
contents of an event representation. Experiment 1 generalizes the
performance-based tasks developed in the domain of music cognition
(Repp, 1992, 1998) to the domain of seeing dynamical scenes. Based
on prior work, we predict that participants’ detection accuracy for tran-
sient slow-downs that occur during videos of multiple physical events
will decrease at event boundaries relative to nonboundary intervals
(although it is also possible that detection accuracy may increase at
boundaries; Baker & Levin, 2015). This task allows us to investigate
the subsecond time course of event segmentation in terms of how
detection accuracies rise and fall, and the symmetry of this pattern
along the event boundary. In Experiment 2, we predict that partici-
pants will be better at detecting “simulation” probes—briefly pre-
sented letters on stationary objects in dynamical scenes—if they
appear on objects that are along the simulated trajectory of the current
event, relative to spatially controlled counterparts. This task allows us
to test the hypothesis that physical event representations that are formed
spontaneously during vision guide selective processing via prediction.
Additionally, and consistent with event segmentation theory (Zacks,
2020), we predict that selective processing of relevant objects will be
lower at event boundaries compared to event middles, since attention
allocated to the transition between event models may impact

performance on a secondary task (see also Huff et al., 2012; Pradhan
& Kumar, 2022). Critically, in both experiments, participants are not
informed of physical events and are simply tasked with paying atten-
tion to either temporal (Experiment 1) or simulation (Experiment 2)
probes. Thus, our study design should tap into automatic, visual pro-
cesses and help reveal the structure of physical event representations
as they are formed during vision.

Experiment 1

In Experiment 1, we examined how and when physical events are
spontaneously segmented as part of visual processing. To reveal the
time course of how physical event segmentation occurs at subsecond
resolution, we showed participants videos of multiple physical
events and asked them to indicate if and when during the video
they noticed a temporary slowing of the video.

Method

Participants

Per our preregistration, we recruited 110 participants from Prolific,
such that there were 11 groups of 10 participants who saw the same
set of videos. Data were collected in 2021. We excluded one partic-
ipant for not having at least half of the trials usable. For our subject-
wise analyses, one additional participant was excluded for not hav-
ing enough event boundary trials usable (see below for preregistered
trial exclusion criteria). This number of participants does not include
data from an additional 29 participants who started the task but did
not complete all of the test trials. Included participants (N= 50
female, N= 58 male, N= 2 unknown) were between 20 and 37
years of age (Mage= 28.05 years) and were majority white (N=
80 White, N= 7 Black, N= 9 Asian, N= 9 multiple ethnicities,
N= 2 other, N= 3 unknown) from the United States or United
Kingdom (N= 32 United States, N= 76 United Kingdom, N= 2
unknown). Results should therefore be interpreted with these sample
demographics in mind.

Stimuli

We createdmultievent videos using a combination of Python (Van
Rossum & Drake, 2009) and Blender (Community, 2018) software,
inspired by recent work on causal graph structures in physics repre-
sentations (Roussel et al., 2019). Specifically, we modified the code
base created by Roussel and colleagues to compose videos where
objects interacted with one another across multiple different physi-
cally plausible events. We focused our research on a handful of
event types that were simple and easily identifiable by human partic-
ipants: collision (two objects collide), occlusion (one object goes
behind another or becomes visible again), containment (one object
enters another object), falling (one object falls from a ramp), and top-
pling (one unstable object hits the ground; see Figure 2A). For the
current experiment, we focused on the former four event types, as
they could easily be strung together into every possible two-event
combination (e.g., an object falls and then collides with another
object; an object is occluded and then contained by another object,
etc.). We created two unique examples for each two-event combina-
tion for a total of 32 “base” videos (mean video duration: 9.75 s;
range: 6.23–14.3 s). Additionally, we added a 3-s countdown to
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the start of each video so that participants could prepare for the video
onset.
Physical event boundaries were defined by two expert coders

(authors) who resolved disagreements by discussion. The criteria
for determining physical event boundaries were subjective, but cod-
ers aimed to identify the onsets and offsets of every physical event
shown in the scene. Each video was determined to have two or
three event boundaries that separated different physical event types
(e.g., the end of an occlusion event prior to a collision event).

These event boundaries were used to relate to temporal probe detec-
tion accuracy.

Apparatus

Because this experiment was run online, we had little control
over the monitor setup (e.g., refresh rate, distance to the display).
Nonetheless, we embedded procedures in our recruitment and experi-
mental task to ensure that the experiencewas similar across participants.

Figure 2
Design of the Two Experiments Presented in This Article

Note. (A) In both experiments, participants saw videos that consisted of a sequence of two or more different physical event types: collision, containment,
occlusion, falling, and topple. Dashed arrows indicate the motion of the target object—the object that is set in motion initially in each scene—and were not
shown during the actual experiment. (B) In Experiment 1, participants watched videos with or without temporal probes (temporary slowing of the video frame
rate for between 158 and 190 ms) that occurred either at expert-determined event boundaries (e.g., the onset of a ball falling off of a ramp) or at other points in
the video. Participants were tasked with pressing the spacebar when they noticed a temporal probe in the video and reporting their confidence at the end of the
video. (C) In Experiment 2, participants watched videos with or without simulation probes (briefly presented letters on stationary objects) that occurred either
on objects that were on the simulated trajectory of the ongoing event (e.g., the orange ball that the red ball will hit; indicated with the dashed black arrows) or
matched objects that were outside of the ongoing event. Participants were tasked with pressing either the “E” or “F” key when they saw the letter flash on the
screen, and reporting their confidence at the end of the video. See the online article for the color version of this figure.
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First, we required that participants in our study participated on a desk-
top or laptop computer (and not a tablet or mobile device), using
Prolific’s inclusion criteria. Second, prior to starting the experiment,
participants were told to adjust the size of an image onscreen to be
the size of a credit card while keeping their arms comfortably out-
stretched. This allowed us to adjust our stimulus presentation size
accordingly. Once participants completed this, they were told to main-
tain this arms-length distance from the monitor for the remaining dura-
tion of the experiment. Finally, after the experiment, all participants
reported that the videos ran clearly and smoothly. In an open-ended
response, two participants noted the difficulty of telling apart temporal
probes from the refresh rate (“most of the distortions are pretty easy to
spot apart from the few where it is hard to differentiate between fram-
erate and distortion because the distortion is so minor” and “hard to tell
sometimes if it was an intentional pause or a display glitch”). However,
both of these participants showed response profiles that were in the
hypothesized direction (i.e., better detection of nonboundary than
boundary probes). Thus, although we had little control over task pre-
sentation by virtue of conducting an online study, participants did
not seem to have difficulty viewing the stimuli or performing the
probe detection task as intended.

Temporal Probe Task

For the temporal probe task, participants were asked to quickly and
accurately respond to a slowdown of the video frame rate by pressing
the spacebar. These slowdowns were created using FFmpeg (Tomar,
2006), such that for between 158 and 190 ms, the frame rate of the
video was slowed by half (from 30 to 15 fps, for approximately four
frames; see Figure S1 in the online supplement materials). Videos
were shown centrally on the screen with a reminder at the top of the
page: “Press the spacebar when a pause occurs.” (Note that no real
“pause” occurred in our videos—rather, on some trials, there was a
temporary slowdown in the frame rate. Still, the participants seemed
to understand the task, as evidenced by their performance, the low
rate of exclusions, and debrief survey responses; see the online supple-
mental materials for a summary of our debrief survey.) The border
around the video flashed red when it registered a spacebar response;
otherwise, the border was black. After each video finished, participants
rated their confidence on a sliding scale from not very confident to very
confident (Figure 2B). Participants could then press the next button to
start the next trial. Progress through the experiment was shown with a
trial counter on the bottom of the screen.
Temporal probes could occur at any 200 ms time point from the

start of a video, as long as there was motion on the screen (e.g., probes
did not occur when a ball was occluded). Across the 32 base videos,
there were many possible temporal probe locations (M= 42, range=
26–64), but we only sampled 22 of these probe locations for each
video. To do this, we created 11 different sets of videos (each contain-
ing 96 videos), and collected data from 10 participants for each set. All
participants completed a total of 96 trials, where 64 videos contained a
temporal probe, and 32 did not. Some temporal probes (average of
4.85 per participant) occurred at event boundaries (e.g., as a ball
was going to fall off of a ramp), while the majority of temporal probes
(average of 52.84 per participant) occurred at timepoints within events
(e.g., a ball further up the ramp; Figure 2B). The same base videos
were shown 3 times throughout the experiment—twice with a tempo-
ral probe and once without it (as a filler). These filler trials were
included to ensure that there were some trials in which a temporal

probe was not shown at all, and that participants would be correct if
they withheld their response. For our main analysis, we only analyze
the trials in which a temporal probe was presented. Videos were shuf-
fled and presented in a random order for each participant. Per our pre-
registration, individual trials were excluded if participants pressed the
spacebar more than once during a video, or if participants responded
outside of the acceptable response time window (within 300 and
2,500 ms of the probe).

At the start of the experiment, participants were asked to scale a
bounding rectangle to the size of a credit card, to ensure that videos
were approximately the same size across participants. They then
were shown the experiment instructions and completed two practice
trials. On the first practice trial, participants were shown a video of
a ball colliding with another ball and then a third ball and told there
would not be a temporal probe in this video. On the second practice
trial, the same video was shown, but now there was a temporary slow-
down of the video as the ball rolled towards the first ball it was going
to collide with. After the practice, participants completed a two-
question quiz on the instructions to test for comprehension. If either
question was answered incorrectly, the instructions and practice trials
were repeated, and participants only proceeded to the main experi-
mental trials once they obtained 100% on the comprehension test.
After completing the experimental trials, participants were asked a
series of debriefing questions about task difficulty, engagement, and
any feedback they had about the task. The code used to run this exper-
iment was built using psiTurk, a platform for running behavioral
experiments online (Eargle et al., 2020; Gureckis et al., 2016).

Event Segmentation Task

To supplement the expert-determined boundaries and to test
whether naive participants’ explicit boundary judgments relate to
detection accuracy on the temporal probe experiment, we additionally
collected event segmentation data from a separate set of Prolific par-
ticipants. We had 20 new participants complete this explicit segmen-
tation task, which does not include six participants who did not finish
the task. Demographics of these participants were similar to the tem-
poral probe task: Included participants (N= 14 female, N= 6 male)
were between 21 and 37 years of age (Mage= 29.20 years) and
were majority white (N= 16 White, N= 3 Asian, N= 1 other)
from the United States or United Kingdom (N= 1 United States,
N= 19United Kingdom). For each of the 32 base videos, participants
were first shown the video in its entirety without the ability to pause or
rewind. Then, participants were able to scroll through the video and
press a key to indicate that an event boundary occurred at a given
time window. Participants were allowed to denote multiple event
boundaries and were free to change their answers by pressing the
same key again when they landed on the previously determined
event boundary frame. Once participants were satisfied, they could
proceed to the next trial. Example aggregated responses on several
typical base videos can be seen in Figure S2 in the online supplemen-
tal materials. As can be appreciated, while there was some variability
in where participants decided an event boundary occurred, the peaks
in responses aligned well with expert-determined boundaries.

Transparency and Openness

Deidentified data for Experiment 1, as well as the videos that were
shown, are publicly accessible at https://osf.io/ma32p/. The code used
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to run the tasks is publicly accessible on Github (Experiment 1 tempo-
ral probe task: https://github.com/CNCLgithub/phys-env-psiturk/tree/
temporal_probe; Experiment 1 event segmentation task: https://
github.com/CNCLgithub/phys-env-psiturk/tree/event_seg). The code
used to create the videos for both experiments is also publicly
accessible on Github (https://github.com/CNCLgithub/physical_event_
primitives) as is the code for the analyses (https://github.com/
CNCLgithub/physical_events_analysis). There is a preregistration for
Experiment 1 here https://aspredicted.org/blind.php?x=5ZF_D5T.

Results

Detection Accuracy: People Are Worse at Detecting Probes
That Occur at Event Boundaries

For our main analysis, we asked whether detection accuracy for
temporal probes placed at expert-determined boundaries (i.e.,
between collision, containment, falling, and occlusion events) was
lower than temporal probes placed at nonboundary timepoints. We
focus our analyses on participants’ average probe detection accu-
racy, rather than accuracy adjusted for participants’ false alarm
rates, since false alarms were extremely low in this sample (average
false alarm rate of 1.3%, with only 3% of participants false alarming
to more than one nonprobe trial). In this and all following analyses,
we only consider the trials in which participants responded once
within the detection window (average 1.26% of trials per participant
dropped for multiple key presses; average 8.64% of trials per partic-
ipant dropped for out-of-range response times). Probe detection
accuracy was averaged across boundary and nonboundary probe tri-
als within each participant, and a two-sided paired t test was used to
determine significance. As depicted in Figure 3A, participants’
detection accuracy for temporal probes that occurred at event bound-
aries (M= 33.20%) was lower than that of nonevent boundaries
(M= 61.06%)—t(107)=−11.36, p, .001—a strikingly strong
effect (Cohen’s d= 1.10), that was evident in 96 of the 108 partic-
ipants we analyzed (Figure 3B). This was also true in our preregis-
tered analysis collapsing across participants (instead of trial types
within participant): using Fisher’s exact test, we found that temporal
probes that occurred at event boundaries (36.32% of 479 boundary
probes detected) were less likely to be detected compared to non-
event boundaries (62.67% of 5,760 nonboundary probes detected;
two-sided test, p, .001). Thus, participants readily experience the
boundaries between physical events, as evidenced by their difficulty
in recognizing changes in the speed of a video at event boundaries.
As an exploratory follow-up, we investigated probe detection

accuracy in each event type separately (Figure 3C). Because differ-
ent participants saw different subsets of physical events, varying
numbers of participants contributed data to this analysis. Across all
event types, detection accuracy was substantially decreased relative
to nonboundary probe detection accuracy—collision: M= 33.82%,
t(67)=−5.34, p, .001; containment: M= 29.26%, t(93)=−6.95,
p, .001; falling: M= 28.60%, t(73)=−7.40, p, .001; occlusion:
M= 38.16%, t(74)=−5.13, p, .001. This was also true when we
performed our preregistered analysis of collapsing across partici-
pants—collision: 42.86%, p, .001; containment: 37.13%, p, .001;
falling: 26.77%, p, .001; occlusion: 40.86%, p, .001. This sug-
gests that the overall lower detection accuracy we see is not being
driven by a particular event type, but may be a shared property of
physical events.

In addition to investigating probe detection accuracy at expert-
determined boundaries, we asked whether probe detection accuracy
tracks naive participants’ agreement about the placement of event
boundaries. To test this, we averaged probe detection accuracy
across participants for each possible temporal probe (704 unique
videos)—on average, this value represented detection accuracy
aggregated from 8.9 participants per temporal probe. Then, we cal-
culated for each of the 32 base videos the proportion of event seg-
mentation participants who indicated an event boundary had
occurred within 200 ms time windows. Finally, we correlated aver-
age probe detection accuracy from Experiment 1 with the propor-
tion of participants who indicated an event boundary within the
window of time of the corresponding temporal probe. When con-
sidering all trials (including both the boundary and nonboundary
trial types), we found a significant negative relationship between
probe detection accuracy and event boundary agreement (r=−.41,
p, .001), indicating that the more people agreed that an event
boundary occurred, the less likely a temporal probe would be
detected at that time point. This relationship persists when we
only consider nonboundary probe trials (r=−.38, p, .001),
and is marginally significant when we only consider boundary
probe trials (r=−.27, p= .052). These results illustrate the robust-
ness of our categorical analysis and further establish that event
boundaries are experienced during spontaneous visual processing.

Our results thus far have not taken into consideration an important
potential confound: that is, at event boundaries, we may expect to see
more changes when physical dynamics of the video change, which
would be reflected in the low-level pixel values of the video. This
means that we may not be picking up on event boundary representa-
tions per se, but instead the impact of image changes on temporal
probe detection accuracy. To address this, we first calculated the
amount of pixel change that occurred during temporal probes sepa-
rately for boundary and nonboundary probe trials. Specifically, we
used OpenCV (Bradski, 2000) to average the difference in pixel val-
ues between adjacent frames for each frame during the temporal
probe. First, we found that the amount of pixel change that occurred
for temporal probes at event boundaries (M= 0.06) was not different
from that of nonboundaries (M= 0.05), t(703)= 1.36, p= .173.
Second, we investigatedwhether boundary status still had a significant
impact on temporal probe detection accuracy when we include pixel
change as a predictor. In a linear mixed effects model with participant
as a random effect, we found that pixel change did not predict tempo-
ral probe detection accuracy (β= 0.02, p= .902), while boundary sta-
tus did (β=−0.27, p, .001; Table 1). Therefore, our results are
inconsistent with a purely low-level account of pixel change.

However, it is also possible that boundary status and pixel change
interact to predict temporal probe detection accuracy. Thus, we ran a
second linear mixed effects model with participant as a random effect,
this time including an interaction term as an additional predictor. We
found that there was in fact a significant interaction between boundary
status and pixel change (β=−1.24, p, .001). To investigate the
direction of this effect, we calculated the average temporal probe
detection accuracy for each probe and then correlated this with the
amount of pixel change, separately for boundary probe and nonboun-
dary probe trials. We found that pixel change was not significantly
related to temporal probe detection accuracy for nonboundary probes
(r= .06, p= .109), but was significantly related to boundary probes
(r=−.29, p= .033; Figure S3 in the online supplemental materials),
such that boundary probes with higher amounts of pixel change
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showed lower average detection accuracy. Together, these results sug-
gest that although pixel changes can influence temporal probe detec-
tion, boundary status remains an important factor influencing
temporal probe detection accuracy.

The Time Course of Event Segmentation: Temporal
Symmetry in Probe Detection Relative to Event Boundaries

So far, the results support our hypothesis that participants segment
the continuous flow of sensory inputs according to physical events,
as evidenced by their decreased ability to detect temporal probes at

expert-determined event boundaries as well as boundaries empiri-
cally determined by naive participants.

Critically, beyond the basic contrast of boundary versus nonboun-
dary trials, our experimental design allows us to investigate the time
course of how a new event is segmented in visual perception. We
analyzed how probe detection accuracy changes as a function of
time—i.e., when during the video the probe occurred relative to
the moment of the nearest event boundary. To do so, we first col-
lapsed the detection accuracy across trials, resulting in between
189 and 479 responses over the time interval of −1,000 to
1,000 ms centered at the event boundary at increments of 200 ms.

Figure 3
Temporal Probe Detection Accuracy From Experiment 1, Averaging the Boundary and Nonboundary
Responses Within Participants

Note. (A) Temporal probes were significantly less likely to be detected when they occurred at expert-determined event
boundaries compared to nonboundaries. Dots represent individual participant averages, and error bars reflect the 95%
confidence interval derived from bootstrap resampling of the mean. (B) Differences at the individual participant level,
sorted by the size of the effect. The expected difference (boundary accuracy less than nonboundary accuracy) was
found in 96 out of the 108 participants included in this analysis. (C) Exploratory breakdown of temporal probe detection
accuracy for the four different event types. Average participant accuracy on nonboundary trials is marked with a dashed
line. Because the number of event type boundaries that were tested varied by participant group, subsets of participants are
included in this analysis per event type (collision:N= 68; containment:N= 94; falling:N= 74; occlusion:N= 75). (D)
The proportion of participants who detected a temporal probe was significantly negatively related to the proportion of
event segmentation participants who indicated an event boundary in the 200-ms window around that time point when
considering all possible probes, and when specifically looking at nonboundary probe trials (blue dots), but only margin-
ally so when considering boundary probe trials (red dots). Dots represent averages across participants for different probe
trials. The shaded area reflects the 95% confidence interval derived from bootstrap resampling of the correlation.
Contain.= containment. See the online article for the color version of this figure.
*** p, .001.

PHYSICAL EVENTS STRUCTURE VISUAL PERCEPTION 7

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.



Second, we calculated confidence intervals for detection accuracy at
each temporal distance to the event boundary by resampling the cor-
responding trials 1,000 times with replacement. Finally, we charac-
terized the rate of change in detection accuracy using a sigmoid
function, instead of a linear fit, based on our qualitative observations
that the way detection accuracy changed as a function of time was
often nonlinear. We separately fit sigmoid functions preevent boun-
dary (between −1,000 and 0 ms) and postevent boundary (between
0 and 1,000 ms) using SciPy curve fitting functions (Virtanen et al.,
2020). Specifically, we conducted 1,000 bootstrap resamples of the
average detection accuracy for each window of time, fitting a sig-
moid function and saving the parameter values on each iteration.
We then performed a two-tailed direct bootstrap hypothesis test on
the resulting parameter estimates for the logistic growth/decay rate
to assess whether the rates of changewere symmetric or significantly
different pre- and postboundary.
As shown in Figure 4A, there was a dropoff in average temporal

probe detection accuracy when approaching the event boundary,
followed by a return to baseline accuracy following the event boun-
dary. Roughly centered at the event boundary, there is approxi-
mately one full second period (from −400 to 400 ms relative to
the boundary) in which accuracy drops by a large amount and
recovers that back. Indeed, this was confirmed in our analysis
of the resampled sigmoid slope values: The rate of logistic
decay preboundary—log(β)= 2.86—was not significantly steeper
than the rate of logistic growth postboundary—log(β)= 1.23,
p= .168 (Figure 4B). However, a bimodal distribution for pre-
boundary rates of logistic decay was evident, with some values
being in the same range of the postboundary rate of logistic growth,
and some seemingly higher. In an exploratory analysis, we next
investigated whether this bimodal distribution may be due to differ-
ences across different types of event boundaries. Indeed, we found
that the rates of logistic growth and decay in detection accuracy some-
what varied by event type (Figure 4C). Specifically, consistent with
the overall trend, preboundary rates of change were not significantly
different from postboundary rates of change for containment—
log(β)= 1.50 versus log(β)= 0.77, p= .576—or falling events—
log(β)= 3.66 versus log(β)= 3.32, p= .640. However, for the
remaining event types, it is evident that there is a quick dropoff in
detection accuracy preboundary, followed by a more gradual pickup
postboundary; for collision, preboundary rates of changewere signif-
icantly higher/steeper than postboundary rates of change—log(β)=
3.63 versus log(β)= 0.78, p= .048—and the same was true for

occlusion—log(β)= 3.34 versus log(β)= 0.53, p= .014. These
results indicate that while there is an overall decrease in temporal
probe detection accuracy at event boundaries, how soon this detection
accuracy decreases and then returns to baseline accuracy level seems
to depend on the particular event types. These exploratory results
indicate that there may be differences in how event models come
online during perception.

Confidence and Response Time Also Reflect Event
Boundaries

The focus of our research was on temporal probe detection accu-
racy, but we can also ask whether participants’ confidence and
response times were impacted by whether temporal probes were
placed at boundary versus nonboundary timepoints. First, we inves-
tigated probe detection confidence averaged across boundary and
nonboundary probe trials within each participant using a two-sided
paired t test. As depicted in Figure S4A in the online supplemental
materials, participants’ confidence in their performance at detecting
temporal probes at event boundaries (M= 69.46) was lower than
their confidence for detecting temporal probes at nonevent boundar-
ies (M= 75.44), t(108)=−5.52, p, .001. This is consistent with
our main detection accuracy findings, which suggest that detecting
temporal probes at event boundaries is more difficult. Importantly,
although the amount of pixel change that occurred during a probe
was related to participants’ confidence, there was still a significant
effect of event boundary status (Table S1 in the online supplemental
materials). There was also a significant relationship between confi-
dence and event boundary agreement across our event segmentation
participants for all probe trials (r=−.20, p, .001) and when only
considering nonboundary probe trials (r=−.14, p, .001), but not
when only considering boundary probe trials (r=−.13, p= .340;
Figure S4B).

Finally, we asked whether participants were slower to respond to
temporal probes when they occurred at event boundaries. Similar to
our confidence results, we found that event boundary status predicted
response time such that even if people detected a probe, they were in
fact slower to respond when that probe occurred at an event boun-
dary. This result is based on a linear mixed effects model that took
into account pixel change (Table S2 in the online supplemental
materials). We find broadly consistent (though weaker) results in
participant-level and continuous analyses of response time data
(Figures S4C and S4D in the online supplemental materials).

Experiment 2

Experiment 1 demonstrated how and when visual input is demar-
cated into discrete events during perception. However, this is only
important insofar as it helps guide attention and other downstream
processing. In Experiment 2, we tested whether a form of “look
ahead” simulations guide which objects are prioritized as part of a
physical event representation. Furthermore, we ask whether object
prioritization depends in part on when during an event it is
probed—with the idea that attention towards objects relevant to
the scene should be higher during event middles than event bound-
aries (Zacks, 2020). We showed participants videos consisting of
multiple physical events in a sequence and asked them to indicate
if and when during the video they noticed the flashing of a letter
on one of the objects in the scene.

Table 1
Results From a Linear Mixed Effects Model

Temporal probe detection accuracy by pixel change+ boundary condition

Predictor Beta estimate SE t statistic p

Intercept .613 0.020 30.695 ,.001
Condition (boundary) −.270 0.022 −12.491 ,.001
Pixel change .015 0.121 0.123 .902
Participant random effect .036 0.012 — —

Note. Probe detection (1 for detected, 0 for not detected) was predicted
from the amount of pixel change at the probe and the boundary condition
(1 for boundary, 0 for nonboundary), using data from all trials across
participants (with participant as a random effect). The equation used in the
model is shown as the table heading. The beta parameter, standard error,
t statistic, and p values are given for each of the predictors.
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Method

Participants

We recruited undergraduate students from the psychology sub-
ject pool to complete an online version of this task. Data were col-
lected in 2022. Our goal was to recruit 20 total participants in two

groups of 10 participants each, with participants in the same
group seeing the same combination of videos. However, due to
the asynchronous nature of online recruitment, we ended up col-
lecting 28 total participants (13 saw one set of videos, and 15 saw
the other set). All participants were included in the study for
having more than half of the trials usable (described more
below). Demographic information of the participants is unavailable,

Figure 4
Rates of Change in the Average Probe Detection Accuracy Approaching and Receding From
Expert-Determined Event Boundaries

Note. (A) Detection accuracy rapidly declines prior to event boundaries, with the lowest detection accuracy occur-
ring 200 ms before the boundary, and then increases following the event boundary. Sigmoid functions quantify such
change in detection accuracy, and the best fits to the average data are displayed as lines pre- (purple) and postboundary
(orange). (B) Sigmoid model slopes of the relationship between detection accuracy and temporal distance from the
event boundary, calculated separately for preboundary and postboundary. Log-transformed slopes are shown based
on 1,000 bootstrap resamples. The average sigmoidmodel slopewas not significantly different pre- and postboundary.
(C) Detection accuracy and distance plotted separately for each of the four event types. (D) The sigmoid model slopes
after log transformation for 1,000 bootstrap resamples plotted separately for each of the four event types. Prop.=
Proportion; Pre= preboundary; Post= postboundary. See the online article for the color version of this figure.
* p, .05.
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but psychology subject pool participants tend to be college-aged
(18–22 years old) and balanced in terms of gender.

Stimuli

We created new multievent videos again using a combination of
Python and Blender software, as in Experiment 1. This time, we
used all five event types (collision, occlusion, containment, falling,
and toppling) and strung them together into three-event videos. We
also added numerous distracting objects to each scene in order to test
for attentional allocation. We created a total of 32 “base” videos that
were between 3 and 6 s long (mean video duration: 4.39 s).
From these base videos, we created probe videos using Adobe

Premiere Pro software (Adobe Inc., 2019). Specifically, for each
video, we first marked the transitions between physical events, and
then determined whether in the time shortly before that event boun-
dary there was (a) a target object present that would be on the simu-
lated trajectory of the ongoing physical event (e.g., a ball that is
about to be collided) and (b) a control object present that was of sim-
ilar size, shape, color, and location as the target object but not involved
in the physical event.Most videos had either one or two possible event
boundaries that could be probed, with an average of 1.8 events. Then,
for these events, we created two videos: one in which a gray letter
flashed on the target object and one in which a gray letter flashed
on the control object (Figure 2C). The letters were always placed in
similar locations on the control and target objects, and lasted for
66 ms (two frames in a 30 fps video) before disappearing. Videos
were randomly assigned to either having an “E” or “F” flash on the
screen, but were made consistent across participants. On average,
the offset of the letter flash occurred approximately 35.60 ms before
event boundaries, although there was variability in when these probed
occurred (with some shown at the boundary [as soon as 4 ms before
the event boundary] and some shown in the middle of the event
[as late as 2,000 ms before the event boundary]), which we later explore.

Apparatus

This experiment was run online and thereforewewere unable to con-
trol the monitor setup (e.g., refresh rate, distance to the display). As in
Experiment 1, we required all participants to participate on a desktop or
laptop computer, adjust the size of an image on the screen to a credit
card size to calibrate stimulus presentation size, and maintain an arms-
length distance throughout the experiment. In the debrief survey, all par-
ticipants reported that they did not experience issues in video quality
(i.e., the videos ran smoothly and clearly). Although some participants
commented on the difficulty of telling apart which letter flashed, none
expressed difficulty in seeing that a letter was presented (e.g., “…I also
found it very hard to see the letters, but could recognize flashes.”).

Simulation Probe Task

For the simulation probe task, participants were asked to quickly and
accurately respond to the 66-ms letter flash by pressing the key that cor-
responded to the flashing letter (either an “E” or an “F”). Right before
each trial, participants saw a reminder at the top of the page: “Pay atten-
tion for an ‘E’ or ‘F’ flashing on the screen.” In pilot testing, we deter-
mined that the size and duration of the simulation probe made it very
difficult to detect. Thus, each videowas shown in full-screenmode dur-
ing the actual task. The border around the video flashed red when it reg-
istered a response; otherwise, the border was black. After each video

finished, participants rated their confidence on a sliding scale from
not very confident to very confident. Participants could then press the
next button to start the next trial. Progress through the experiment
was shown with a trial counter on the bottom of the screen.

Asmentioned above, simulation probes could occur either on target
or control objects shortly before the boundary between physical
events. We created two different sets of videos, where the same
event boundary was only ever tested in either the target or control con-
dition. In one set, 32 targets were probedwhile 26 control objects were
probed; in the other set, the opposite was true. In half of these trials,
the letter “E” appeared and in the other half, the letter “F” appeared.
All participants also saw six videos inwhich no probe occurred, which
were randomly chosen for each participant; however, we only consid-
ered trials in which a probewas presented for our analyses. Thismeant
in total, participants completed 64 trials, which were presented in a
randomized order. Similar to Experiment 1, individual trials were
excluded if participants pressed either the “E” or “F” key more than
once during a video, if they responded with the wrong key press, or
if they responded outside of the acceptable response time window
(within 300 and 2,500 ms of the probe).

At the start of the experiment, participants were shown the experi-
ment instructions and completed two practice trials. On the first prac-
tice trial, participants were shown a video of a ball rolling out of a tube
then hitting a block that topples and collides with another ball. They
were told there would not be a simulation probe in this video. On the
second practice trial, the same videowas shown, but now the letter “E”
flashed on the block that would topple. (Participants were shown a
screenshot of the letter on the block prior to the practice trial to give
them an idea of what to look for; this was never shown for the actual
test trials.) After the practice, participants completed a two-question
quiz on the instructions to test for comprehension. If either question
was answered incorrectly, the instructions and practice trials were
repeated, and participants only proceeded to the main experimental
trials once they obtained 100% on the comprehension test. After com-
pleting the experimental trials, participants were asked a series of
debriefing questions about task difficulty, engagement, and any feed-
back they had about the task. The code used to run this experiment
was built using psiTurk (Eargle et al., 2020; Gureckis et al., 2016).

Transparency and Openness

Deidentified data for Experiment 2, as well as the videos that were
shown, are publicly accessible at https://osf.io/ma32p/. The code used
to run the tasks is publicly accessible onGithub (Experiment 2 spatial
probe task: https://github.com/CNCLgithub/phys-env-psiturk/tree/
spatial_probe). The code used to create the videos for both experi-
ments is also publicly accessible on Github (https://github.com/
CNCLgithub/physical_event_primitives) as is the code for the
analyses (https://github.com/CNCLgithub/physical_events_analysis).
Experiment 2 was not preregistered.

Results

Detection Accuracy: People AreMore Accurate at Detecting
Probes Placed on Objects That Lie Along the Simulated
Trajectory of the Ongoing Physical Event

For our main analysis, we asked whether detection accuracy for
simulation probes placed on target objects (i.e., objects that are
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stationary at the moment when the simulation probe flashes but oth-
erwise lie on the simulated trajectory of the current event) would be
higher than detection accuracy for simulation probes placed on control
objects (i.e., objects that are also stationary at the moment when the
simulation probe flashes but lie outside of the simulated trajectory
of the current event). The rationale for this hypothesis was that atten-
tion would be allocated via a form of “look ahead” simulations toward
those objects that lie within the unfolding local causal context of the
current physical event (though again, critically, are not actively in
motion). To test this, we averaged probe detection accuracy across
target and control probe trials within each participant, and used a two-
sided paired t test to determine significance. We again focus on detec-
tion accuracy, rather than accuracy adjusted for false alarm rates, given
the low rate of false alarms in this task (average false alarm rate of
0.5%, with only one participant false alarming tomore than one nonp-
robe trial). In this and all following analyses, we only consider the tri-
als in which participants responded once within the detection window
(average 1.00% of trials per participant dropped for multiple key
presses; average 4.41% of trials per participant dropped for
out-of-range response times). Importantly, we also confirmed that
when participants responded on a given trial, they were significantly
above chance in correctly determining which letter appeared—M=
77.84%, t(26)= 10.70, p, .001, Cohen’s d= 2.10; one participant
excluded for not responding on any trial. This was true both for sim-
ulation probes that occurred on target objects—M= 81.46%, t(26)=
13.75, p, .001, Cohen’s d= 2.70—and for simulation probes that
occurred on control objects—M= 73.69%, t(26)= 5.94, p, .001,
Cohen’s d= 1.16—with only a marginal advantage for determining
which letter appeared on target objects—t(26)= 2.00, p= .055,
Cohen’s d= 0.39. For all subsequent analyses, we only considered tri-
als in which participants responded with the correct letter probe (aver-
age 11.38% of trials per participant dropped for incorrect key press
[e.g., “F” when the probe was “E”]).
As depicted in Figure 5A, participants’ detection accuracy for

simulation probes that occurred on target objects (M= 49.31%)
was significantly higher than that of control objects (M= 41.71%),
t(27)= 3.54, p= .001, Cohen’s d= 0.68. This effect was not driven
by just a few subjects; instead it was observed in 23 out of 28 partic-
ipants (Figure 5B). These results suggest that participants are indeed
selectively processing objects that are along the simulated trajectory
of the current physical event.
Could these results simply reflect the spatial spread of attention?

Indeed, when we looked at our stimuli, we found that control objects
tended to be further away from the main agent object at the moment
when the simulation probe occurred (Figure S5A in the online sup-
plemental materials). Additionally, in the debrief survey, several par-
ticipants mentioned focusing on the moving object as a strategy. To
address this potential confound, we ran an analysis on a subset of tri-
als where we matched the pixel-based Euclidean distance between
the target object and the agent object (e.g., the red ball that will
soon collide with the target object, but not the control object) and
the control object and the agent object. Specifically, we only looked
at trials where the distance between the center of the agent and the
center of the target/control object was between 225 and 275 pixels,
reducing the number of target and control object trials per participant
from approximately 50 to between 10 and 20 trials. When matching
for spatial distance in this way, we found a similar (in fact, numeri-
cally larger) effect as in our main result: participants’ detection accu-
racy for simulation probes that occurred on target objects (M=

55.11%) was significantly higher than that of control objects (M=
41.29%), t(27)= 3.26, p= .003, Cohen’s d= 0.63 (Figure 5C).
This effect was again evident in the majority of participants (17
out of 28; Figure 5D), and robust across the range of spatial distance
values that were tested (Figure S5B in the online supplemental
materials).

We also investigated whether the particular letters we used as
probes mattered for our effects. To our surprise, we observed that
detection accuracy as well as the magnitude of the effect were
impacted by the identity of the letter shown (see Figure S6A and
S6B in the online supplemental materials). Even though our main
aggregate results comparing target and control objects are not
impacted by this difference between the two letter probes, this result
indicates that future studies should consider the detectability of

Figure 5
Simulation Probe Detection Accuracy in Experiment 2, Averaging
the Target and Control Object Trials Within Participants
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Note. (A) Simulation probes were significantly more likely to be detected
when they appeared on target objects (i.e., objects within the current phys-
ical event) compared to control objects. Dots represent individual partici-
pant averages, and error bars reflect the 95% confidence interval derived
from bootstrap resampling of the mean. (B) Differences at the individual
participant level, sorted by the size of the effect. The expected difference
(target accuracy greater than control accuracy) was found in 23 out of the
28 participants tested. (C) When matching for the Euclidean distance
between the probed objects and the agent object, simulation probes were
still significantly more likely to be detected if they appeared on target com-
pared to control objects. (D) Differences at the individual participant level
after matching for difference, with the expected difference found in 17
out of the 28 participants tested. See the online article for the color version
of this figure.
** p, .01.

PHYSICAL EVENTS STRUCTURE VISUAL PERCEPTION 11

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

https://doi.org/10.1037/xhp0001218.supp
https://doi.org/10.1037/xhp0001218.supp
https://doi.org/10.1037/xhp0001218.supp
https://doi.org/10.1037/xhp0001218.supp
https://doi.org/10.1037/xhp0001218.supp
https://doi.org/10.1037/xhp0001218.supp


letters when designing their experiments (Mueller & Weidemann,
2012).

Confidence and Response Time Also Reflect Simulated
Trajectory of Objects

We also tested whether participants’ confidence and response
times reflect any signature of simulated trajectories within an
event. First, we investigated confidence in probe detection accuracy
averaged across target and control probe trials within each partici-
pant and used a two-sided paired t test to determine significance.
As depicted in Figure S7A in the online supplemental materials, par-
ticipants’ confidence in their performance at detecting simulation
probes appearing on target objects (M= 61.86) was higher than
their confidence in detecting simulation probes appearing on control
objects (M= 57.47), t(27)= 3.28, p= .003. Second, to analyze
response time data, we considered participants who responded to
at least one target and control trial, resulting in only 26 participants.
Trending in the direction we expect, we found participants’ response
times were numerically smaller on target objects (M= 1,603.07 ms)
relative to controls (M= 1,635.37 ms), t(25)=−1.83, p= .078, but
this relationship did not reach significance (Figure S7B in the online
supplemental materials). These results are consistent with our main
detection accuracy findings, suggesting that objects along the simu-
lated trajectory of the current event are prioritized.

Connecting Experiments 1 and 2: Detection Accuracy at
Event Boundaries Versus Event Middles

Thus far, the results from Experiment 2 have shown that physical
events enable selective processing of objects that are on the future
trajectory of the current physical event, relative to control objects.
At a finer level of granularity, the ability to detect a simulation
probe may depend on when during the time course of an event it
occurs, much like the time course of the detectability of temporal
probes in Experiment 1. Because simulation should be tied to the
current physical event, we may expect the detection accuracy of sim-
ulation probes to be higher during an event (i.e., event middle) com-
pared to at an event boundary.
In Experiment 2, simulation probes were typically placed just

before physical event boundaries, but sometimes, they appeared
much earlier in time—that is, during the middle of an event. This
variability in the temporal placement of simulation probes gave us
the opportunity to explore whether detection accuracy was modu-
lated by temporal proximity to the event boundary. Experiment 1
demonstrated that temporal probe detection accuracy is at baseline
levels around 600 ms before the event boundary, but substantially
drops within 200 ms of the event boundary. Therefore, we labeled
probes that occurred 500 ms or more before the event boundary
“event middle simulation probes” and probes that occurred closer
in time to the boundary “event boundary simulation probes.”
(Note that too few trials would be included if we only looked at
probes occurring within 200 ms of the boundary.) We first examined
trials in which the simulation probe appeared on a target object (“tar-
get trials”), averaging probe detection accuracy for event middle
simulation probes versus event boundary simulation probes within
each participant and using a two-sided paired t test to determine sig-
nificance. Participants’ detection accuracy for target simulation
probes that occurred at event boundaries (M= 47.17%) was

significantly lower than for probes that occurred at event middles
(M= 54.79%), t(27)=−2.70, p= .012, Cohen’s d=−0.52
(Figure 6A). These results show that detection accuracy decreases
for target simulation probes at event boundaries, relative to event
middles, and are broadly consistent with the event cognition litera-
ture (Zacks et al., 2007). We emphasize that our findings are
based on measuring spontaneously unfolding processes in visual
perception, and underscore the importance of the temporal structure
imposed by physical events on perception.

However, if the temporal dependence of the ability to detect sim-
ulation probes is exclusively due to event-driven prediction (e.g., as
assumed in Eisenberg et al., 2018), we may expect to not see a tem-
poral dependence for objects that are irrelevant to the ongoing event.
To test this, we examined participants’ ability to detect probes that
occurred on control objects (“control trials”). We found that partic-
ipants’ detection accuracy for control probes that occurred at event
boundaries (M= 39.39%) was also significantly lower than for
probes that occurred at event middles (M= 48.63%), t(27)=−2.98,
p= .006, Cohen’s d=−0.57 (Figure 6B). Thus, probe detection
accuracy is enhanced at event middles not just for those objects
that are relevant to the current physical event, but also for control
objects that are in the vicinity of the target object. These results sug-
gest that the decreased ability to detect simulation probes at event
boundaries may reflect a more global effect of attention differences,
instead of, or in addition to, event-driven prediction.

General Discussion

In this article, we conducted two performance-based tasks to gain
insight into the spontaneous formation and contents of physical
event representations in visual perception. Our first experiment

Figure 6
Simulation Probe Detection Accuracy in Experiment 2 Based on
When During the Physical Event the Probe Appeared
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Note. (A) Target simulation probes were significantly more likely to be
detected when they appeared at event middles (more than 500 ms from an
event boundary) compared to near event boundaries. Dots represent individ-
ual participant averages, and error bars reflect the 95% confidence interval
derived from bootstrap resampling of the mean. (B) Control probes were
also significantly more likely to be detected when they appeared at event
middles compared to event boundaries. See the online article for the color
version of this figure.
* p, .05. ** p, .01.
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suggested that physical events are spontaneously segmented in
vision, and allowed us to reveal the temporal profile of how such seg-
mentation occurs during ongoing perception, at subsecond resolu-
tion and at the level of individual event types. Our second
experiment queried the contents of physical events based on the
principle of prediction. We found that objects along the simulated
trajectory of the current physical event have an attentional advantage
over similar objects outside of such predicted trajectory. Together,
these results provide an empirical basis for understanding physical
events as units of visual perception during ongoing experience, start-
ing to bridge the knowledge gap relative to our understanding of
visual object representations and highlighting new avenues for
exploration in intuitive physics.
We note that our study is not unique in the study of physical events

in intuitive physics; several studies have used physical events, but typ-
ically in the form of presegmented singleton events (e.g., animations
including a single event or interaction) which act as stimuli to study
some other cognitive or perceptual phenomena (Gerstenberg et al.,
2017, 2021; Schwettmann et al., 2019). As far as we can tell, physical
events are not the “object” of study in this work, that is, they do not
address the structure of physical events, including how they are seg-
mented to begin with and their contents. Thus, our work makes an
important advance in understanding how physical events impose tem-
poral structure and influence the contents of intuitive physics, provid-
ing the scaffolding for these effects to be observed.
The task in Experiment 1 was inspired by work in audition and

music cognition (Repp, 1992, 1998), which found that participants
are less likely to detect musical phrase lengthenings when they are
placed at boundaries. Transferring this method to the domain of
vision allowed us to determine when event boundaries are perceived
during a series of physical interactions, without informing partici-
pants to attend to physical event structure. Our results mirror that
of Ji and Papafragou (2022), who found that participants are less
likely and slower to detect visual disruptions at event boundaries
compared to event middles (particularly for so-called “bounded”
events, relative to “unbounded” events, an important distinction
made in the linguistic theories of events). In the current study, we
tested not just event boundaries and middles, but also other time-
points in between, allowing us to quantify event segmentation in a
temporally precise manner. This approach provides a data-driven
“behavioral signature” of event boundary status that should be
broadly useful across psychological and cognitive neuroscience
studies of event perception. A key question left unanswered in the
current study is why participants are worse at detecting temporal
probes at physical event boundaries. One possibility is that these
event boundaries simply correspond to moments of perceptual
change (Hard et al., 2011; Newtson et al., 1977). However, our anal-
ysis controlling for changes in pixels indicates that a purely low-level
explanation is unlikely to account for this result. Rather, the lower
temporal probe detection accuracy may reflect instantiation of a
new event model, which likely consumes additional cognitive
resources and might therefore impact task accuracy. Indeed, this
fits with our results showing that the impact of an event boundaries
on probe detection accuracy is not just at the moment of the boun-
dary, but also during the lead up and follow up of the events. A
related possibility is that event transitions “feel” subjectively longer
(therefore making the temporal probes not feel out of place), as sug-
gested in time perception research: Time is judged to have lasted lon-
ger when multiple events occur (Faber & Gennari, 2015), and

rhythms are reproduced as longer at event boundaries (Ongchoco
et al., 2023). If the perceived duration of event transitions is related
to reduced performance on our temporal probe detection task, then
we might expect participants to false alarm more (or “hallucinate”
a temporary slowdown) at event boundaries. Alternatively, partici-
pants could have a response bias against probes near event boundar-
ies, in which case we would expect to find more false alarms at event
middles than event boundaries. In the current study, there were too
few false alarms for us to consider these two hypotheses. Future
work should therefore more precisely determine the cause(s) of
reduced probe detection accuracy leading up to and following
event boundaries.

Infant cognition research has utilized physical event types to study
how physical reasoning develops early in life. One surprising and
consistent finding is that infants treat containment and occlusion dif-
ferently (Baillargeon, 2004; Baillargeon et al., 2010; Hespos &
Baillargeon, 2001, 2006; Lin et al., 2021). Paralleling this result,
in an exploratory analysis we found that detection accuracy showed
temporally symmetrical decay and growth relative to containment
events, but this pattern was temporally asymmetric for occlusion
events. The mechanism for why this may be the case, and why fall-
ing but not collision events also show temporal symmetry, remains a
topic for future consideration. One speculation is that the two events
that showed rapid temporal decay and then slower growth (occlusion
and collision events) are those events that can be distinguished by
infants relatively early in development, between 4 and 6 months of
age (Hespos & Baillargeon, 2001, 2006; Saxe & Carey, 2006).
Alternatively, it may be that these results do not reflect developmen-
tal origins, but rather the dynamics that are afforded by a particular
event type. Similar to recent work exploring intuitions about magic
tricks (Lewry et al., 2021), future research should systematically
study parallels between intuitive physics within the adult visual sys-
tem and its developmental trajectory to better understand how phys-
ical event representations are represented in the mind.

Experiment 2 adapted and tested a key idea from the event cogni-
tion literature (Yates et al., 2023; Zacks et al., 2011) in visual percep-
tion of physical events: Events are defined by their ability to predict
what is going to happen next. For physical events, prediction entails
simulating the trajectory of a moving object and anticipating which
new objects will interact with the moving object (a form of coarse
simulations, or “looking ahead”). Participants were better at detect-
ing probes that occurred on objects along the simulated trajectory of
the current event. We note that because the vertical position and tra-
jectory of objects changed on a video-by-video basis (i.e., some-
times a ball moved from left to right, sometimes from right to left,
and sometimes from up to down), these results are not likely due
to a simple heuristic of predicting along a single path. Physical
events and simulation within them may therefore be a general prin-
ciple that determines the contents of physical events, including the
relevant features of objects (Strickland & Scholl, 2015), which
objects themselves are relevant, and perhaps even inducing invisible
ones into perception (Little & Firestone, 2021).

Although we describe this effect as the result of “look ahead” sim-
ulations, we do not have eye-tracking data to say whether or not par-
ticipants made predictive fixations towards to the target object
during the task. Nonetheless, because target and control objects
were probed equally often in the experiment, any predictive looking
due to task or goals should have been equally likely for either object
(Hayhoe & Ballard, 2005). An explanation that our results are due to
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distance to the moving object does not hold because our effects were
still present (and numerically larger) when restricting our analyses to
target/control objects that were at a similar distance to the moving
object. Thus, we believe that these results reflect event-driven effects
on object-based attention (Chen, 2012). To further establish this con-
clusion, futurework should explorewhether these effects continue to
hold under a broader degree of variation in the observed motion, due
to not just the scene dynamics but also scene-extrinsic properties
such as the viewpoint (e.g., oblique angle, “birds-eye” view, toward
or away from camera) and perhaps variation in lighting. We also rep-
licated the finding that probes placed at event boundaries are more
difficult to detect than probes placed at event middles (Huff et al.,
2012; Pradhan & Kumar, 2022). In prior work, probes were placed
either on targets that participants were explicitly told to pay attention
to (Huff et al., 2012), or in the center or four corners of the stimulus
display (Pradhan & Kumar, 2022). Thus, our study is unique is
showing that probes are better detected when placed on target and
control objects based on the physical events themselves, rather
than on explicit instructions from experimenters. This is despite
the fact that probes placed at event boundaries were in closer prox-
imity to the object that was moving in the scene; if we instead
found that probes placed at event boundaries were better detected,
this could be explained by a simple spread of attention from the mov-
ing object to the objects nearby. Interestingly, this effect was not spe-
cific to the target objects. Thus, the decreased ability to detect probes
at event boundaries appears to be a more global impact of attention,
rather than something that is specific to the ongoing event. Together,
these results underscore the importance of having fine-grained con-
trols not only in terms of temporal aspects of a scene (e.g., as in
Eisenberg et al., 2018; Ji & Papafragou, 2022), but also the object-
level contents of what might be influenced by events.
There are several limitations to note in this study. First, there was a

difference in the number of boundary versus nonboundary trials that
were tested within each participant in Experiment 1. This was part
of our initial design decision, given that we wanted to sample as
many different timepoints in each video as possible, but likely
impacted power (e.g., the analysis in Figure 3D focusing on boun-
dary trials). Second, despite interesting event-specific effects in
Experiment 1, we did not have the power to break Experiment 2
data down into individual event types because of the smaller partici-
pant sample size and number of videos tested. Third, in Experiment 2,
we only investigated attention allocation at time points near event
boundaries or about 1 s away with a single control object. Further
mapping out how attention is directed, and when it is heightened, dur-
ing physical events (as in Experiment 1) will help uncover more of the
internal structure of physical events. Moreover, there are many other
aspects of the probe detection paradigm that could be further exam-
ined in future studies, such as how long probes appear on the screen
and the type of the response required. For example, Pradhan and
Kumar (2022) only found a difference in probe detection accuracy
at event boundaries when participants were instructed to perform a
more difficult go/no-go task. Thus, we might expect that decreasing
the difficulty of the probe detection task, such as by increasing the
time over which a probe is on-screen, would lead to a recovery in par-
ticipant’s probe detection accuracy at event boundaries. Finally, both
of our experiments were tested online, and thereforewewere unable to
precisely control stimulus presentation timing, participant viewing
distance, and other factors that may have influenced participants’ abil-
ity to detect probes. Nonetheless, the fact that the majority of

participants in both experiments showed higher detection rates than
false alarm rates and consistent results across participants can be
seen as evidence for the robustness of our effects.

Our work underscores the existence and structure of physical
events in visual perception, which should inform computational
accounts of intuitive physics (Bear et al., 2021; Piloto et al.,
2022). An influential framework suggests that the mind builds runn-
able mental models via an “intuitive physics engine” similar to prob-
abilistic or approximate forms of physics engines from computer
graphics (Battaglia et al., 2013). Recent work observed the implau-
sibility of simulating the trajectories of all objects in a scene all the
way to the end of their motions (Bass et al., 2021; Ludwin-Peery et
al., 2021), but their solutions either considered a more heuristic-
driven (and less simulation-like) basis for intuitive physics or sug-
gested ad hoc remedies. Our findings motivate an alternative for
visual perception: minimally expressed, selective simulations that
are sufficient to explain and predict the trajectories of objects within
their local causal contexts. Future computational work should imple-
ment such “event-driven intuitive physics engines” to explore the
mechanistic basis of physical events in perception.
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